

Composite Component Framework for
RT-Middleware (Robot Technology Middleware)

Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo Kotoku and Woo-Keun Yoon
Intelligent Systems Research Institute

National Institute of Advanced Industrial Science and Technology (AIST)
AIST Tsukuba Central 2,Tsukuba,Ibaraki 305-8568, Japan
{n-ando, t.suehiro, k.kitagaki, t.kotoku, wk.yoon}@aist.go.jp

Abstract— We have studied a framework of RT-Component
which promotes application of Robot Technology (RT) in various
field. In this paper, we will discuss robotic system development
methodology and our RT-Middleware concepts. The system
development methodology using RT-Component, and new frame-
work to make composite component for RT-Component will be
shown. A evaluation of composite component framework, which
realizes low level and real-time composition of independent RT-
Components, will be derived. Finally conclusion and future work
will be described.

Index Terms—RT (Robot Technology), software component,
middleware, robot system, system integration.

I. INTRODUCTION

In recent years, studies for the robot system integration
developing complex robotic systems by integrating basic robot
functions are becoming important in robotics. A lot of robotic
basic functions have been studied and developed enough to
realize simple intelligent tasks which makes human daily life
more convenient. Robotics research for full-scale application
integrating robotic functional elements is also active now.
Intelligent environment and ubiquitous computing are potential
examples of full-scale application for robotic system integra-
tion.

From such backgrounds, the necessity of the systematic
knowledge for robot system integration has increased. As
shown in a Figure 1, the methodology of robot system inte-
gration independent from persons’ experience and knowhow,
and robot system platform to support it is also needed.

Component

Complex robot systems

Component

Network

Function
Specification

Analysis
model

Design model

Real system
Experience, knowhow

Person dependent system design

Systematic design

Systematic
RT system integration

Implementation framework
Distributed object middleware

Modeling framework
Modeling pattern

Fig. 1. A Robot Systems Modeling Flow: The RT system should be modeled
and designed through systematic design flow independent from the persons’
experience and knowhow.

We started RT-Middleware project from 2002 under
NEDO’s (New Energy and Industrial Technology Develop-
ment Organization) “Robot challenge program”. Basic func-

tions for robot software platform, which supports complex
robot system integration, have been studied. The purpose of
this project is to establish basic infrastructure for robot system
integration, which make it possible to develop systems with
new functions by modularized software components.

Research of software modularisation of robot functions and
development of software libraries for robot system integra-
tion are performed actively in recent years. ORiN (Open
Resource interface for the Network/Open Robot interface
for the Network) is middleware, which offers the standard
communication interface over various FA (factory automation)
equipment including a robot [1], [2].

Orocos is a free software project that includes a set of
class libraries and application framework, and a hard-real-time
kernel for all possible feedback control applications [3], [4].

ORCA (Open Robot Controller architecture) developed in
Toshiba is HORB (Java ORB developed in AIST) based robot
controller architecture [5], [6]. SONY is actively promoting
OPEN-R, which is the standard interface and platform for the
entertainment robot system [7].

On the other hand, one of our purpose is to define stan-
dard interface of the software component for robots, which
makes interconnection possible. Since the standard interface
specification is free and open, any vendors can implement
middleware based on this interface specification. To provide
open-source middleware based on those interface specifica-
tions is another important purpose. Getting feedback from
actual research use and application use, it is expected that the
improvement of the interface specification will be advanced.
Final target is to establish a systematic robot system design
theory derived from the knowledge of component-oriented
robot system integration. If robot systems with new functions
can be constructed more flexibly, it can satisfy every users’
needs individually, which cannot be satisfied now. Thus, it is
expected that the conventional robot industry mainly restricted
to the manufacturing field will be expanded to the nonmanu-
facturing field like support robots for daily life.

In this paper, a RT-Component object model based on
distributed object middleware, and new component framework
”composite component” will be mentioned. First, an outline
about the basic structure of the RT-Component derived from
this discussion will also be mentioned. Next, the architecture
of the core part of the RT-Component will be shown. The
new framework, which realizes component composition and

Proceedings of the 2005 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
Monterey, California, USA, 24-28 July, 2005

0-7803-9046-6/05/$20.00 ©2005 IEEE.

WB3-03

1330

real-time cooperation, composite component framework, will
be introduced. A force-controlled manipulator system, which
was implemented using composite component framework,
and experiments and its results will be shown and finally a
conclusion is described.

II. COMPONENT ORIENTED DEVELOPMENT

Robotics research has been mainly focused on analysis
of mechanical function, machine intelligence, and realization
of simple robot function relatively. On the other hand, the
synthesis knowledge for systematic integration of robot sys-
tems is also necessary to apply simple robot functions to the
real world. It would be said that the present robotics has
little knowledge for the synthesis, and that knowledge is not
systematized even if it exists.

If learning from a general software development flow, a
robot system development flow shown in Figure 2 would
occur.

The knowledge for complex robot system development,
which is performed by researcher and developer based on
their experience and knowhow, can be roughly classified into
system analysis knowledge, system design knowledge, system
implementation knowledge.

Furthermore, the analysis knowledge is classified into the
knowledge to analyze the required specification to adapt
technology to the system (analysis pattern), and the framework
to realize it (analysis model framework). Moreover, it consists
of the knowledge (design pattern) and the framework (design
framework), which bring a design into more concrete level for
implementation. Our RT-Middleware includes an implementa-
tion framework for it.

Function
Specification

Analysis Design Impl.

Analysis
patterns

abstraction levelHigh Low
life of methodologyLong Short

P
ro
bl
em
s

R
eu
sa
bl
e

kn
ow
le
dg
e

M
od
el
in
g

fr
am
ew
or
k

Function
Specification

Function
Specification

Function
Specification

Design
patterns

Implementation
codes

Analysis
framework

Knowldge for
robot system
integration

Design
framework

Implementation
framework

RT-MiddlewareGoal of our research

Fig. 2. RT system development flow. This flow is composed of system
analysis, system design, system implementation. RT-Middleware supports
system implementation level. Deriving systematic system analysis and design
methods is our final goal of this research.

Generally, as shown in Figure 2, the abstraction level of the
knowledge close to implementation is low and is short-life,
and the abstraction level of the knowledge close to analysis
phase is high and is long-life.

If generalized analysis patterns and modeling frameworks
are obtained, the robot system development can easily follow
to technological advancement. Our research aim is to obtain
the abstract design patterns and frameworks, and the RT-
Middleware is an implementation framework and robot system
platform. This is the concept of the RT-Middleware.

III. RT-COMPONENT OBJECT MODEL

We chose CORBA as distributed object middleware for plat-
form independency and programming language independency,
and tried modeling of RT module on CORBA. We propose
the RT-Component, as a RT module unit model based on the
distributed object model.

An RT-Component consists of the following objects and
interfaces.

• Component object.
• Activity.
• InPort as input port object.
• OutPort as output port object.
• Command interfaces.

The general distributed object model can be described as
some interfaces that contain operations with parameters and
a return value. On the other hand, the RT-Component model
has a component object as a main body, activity as a main
process unit, input ports (InPort) and output ports (OutPort)
as data stream ports.

RTComponent
Base class

Composite
RTComponent
Base class

Synchronous
Composite
Component

RTComponent ARTComponent B

Simple
RTComponent
Base class

Asynchronous
Composite
Component

Fig. 3. The RT-Component class hierarchy. User defined component class
inherits simple RT-Component base class. The composite component has RT-
Component itself by the composite pattern.

Figure 3 shows the hierarchy of RT-Component classes.
Simple RT-Component Base Class: In Figure 3, the simple

RT-Component base class is the base class of each new RT-
Component class, which is created by the component devel-
oper. A component developer can develop his/her component
class by inheriting from the RT-Component base class.

Composite RT-Component Base Class: On the RT-
Middleware, various granularity RT-Components will be pro-
vided by component developer. In this case, such a composite
structure or a nested structure are useful for hierarchical
robot system integration. To realize the composite structure,
the composite pattern is applied to the RT-Component object
structure.

The component states and state transition of the component
was defined so that various type of RT-Components could be
treated as common software parts. By giving a common state
transition to RT-Components, and specifying the meaning of
states, it is possible to control the action of many compo-
nents similarly. Various granularity components can be treated
similarly, by developing a component according to this state
definition. It becomes possible to realize the composite com-
ponent, which is nested components and grouped components,
by defining the component state transition.

1331

A. Activity State of RT-Component

The activity of RT-Component has ten state: BORN,
INITIALIZE, READY, STARTING, ACTIVE,
STOPPING, ABORTING, ERROR, EXITING,
FATALERROR, UNKNOWN. Figure 4 shows the state
transition chart (UML state chart) of RT-Component’s
activity. RT-Component’s methods which are invoked in each
state are described in each state block according to the UML
notation.

The meaning of method prefixes is the following.
• entry: An atomic action performed on entry to the state.
• do: An iterated action performed while being in the state.
• exit: An atomic action performed on exit from the state.
The state of having only a “entry” method is a transient

state, which changes to the next state immediately. The state
of having “do” method is a steady state, which can stay at the
state. Table I shows the meaning of each RT-Component state.

TABLE I

THE STATES OF THE RT-COMPONENT ACTIVITY. COMPONENT STATES

MAKE TRANSITION ACCORDING TO THE STATE TRANSITION CHART

SHOWN IN FIGURE 4.

BORN The Born state of RT-Component. Creating
a component instace.

INITIALIZE The Initializing state. RT-Component initial-
ize process is performed at this state.

READY The Ready state. This state can be changed
to the “Active” state immediately.

STARTING The Starting state. Just before entering Ac-
tive state.

ACTIVE The Active state. A main process is per-
formed at this state.

STOPPING The Stopping state. A transient state from
Active state to Ready state.

ABORTING The Aborting state. If error has occured at
Active state, the state entering here.

ERROR The Error state. If error has occured, all state
will be changed to this state.

EXITING The Exiting state. Finalize component and
changed to the exiting state.

FATALERROR The Fatal error state. If fatal error has oc-
cured all state will be changed to this state.

UNKNOWN The Unknown state. The state never come
here.

A component developer has only to map his/her algorithm
or library into each RT-Components state, and he/she can just
insert his/her code to the RT-Component framework.

B. InPort/OutPort

In the low level real-time control layer, if a component is
considered as the functional unit, which consists of inputs,
processing, and outputs, so that it may be exactly expressed
with a control block diagram, it will be easy to perform a
system configuration.

This input/output model is not so suitable for general usage
of the distributed object model. Because the object which
sends its data to other objects has to know all objects’ complete
interface definition. On the other hand, in such low level con-
trol layer, data type, number of data and unit of data are more

Active
entry/ rtc_active_entry

exit/rtc_active_exit
do/ rtc_active_do

rtc_reset

rt
c
_
k
il
l

rtc
_

s
to

p

end

success

Exiting

entry/
rtc_exiting_entry

success

Ready

start

FatalError

Unknown

Starting

entry/
rtc_starting_entry

Stopping

entry/
rtc_stopping_entry

Error
entry/ rtc_erro_enter
do/ rtc_error
exit/ rtc_error_exit

Initialize

entry/
rtc_init_entry

Born

rt
c

_
s

ta
rt

rtc
_
re

s
e
t

rtc_exit

error

error

error

rtc_exit

success

success

success

Aborting

entry/
rtc_aborting_entry

entry/ rtc_ready_entry

exit/rtc_ready_exit
do/ rtc_ready_do entry/ rtc_fatal_entry

do/ rtc_fatal_do
exit/ rtc_fatal_exit

Fig. 4. RT-Component statechart diagram.

important than interface definition. RT-Component adopted the
publisher/subscriber model and defines it as InPort/OutPort.

1) InPort Object: An input port of RT-Component. InPort
receives data from OutPort that calls method of “InPort::put()”.
This is basic function of InPort.

Other functional InPorts, that raise a signal or invoke a
callback method etc., can be implemented as subclasses of
the InPort.

2) OutPort Object: An output port of RT-Component. Out-
Port sends data to InPort that “subscribes” this OutPort, calling
“InPort::put()” as “push” type data exchange. “pull” type data
exchange calling “OutPort::get()” method is also supported.

OutPort supports some subscription type, “New”, “Once”,
“Periodic”, “Periodic New”, “New Periodic”, “Triggered”,
“Triggered Priodic”, “Periodic Triggered”.

For example, the ”New” subscription type means that Out-
Port send data to InPort , which subscribes it, when a new data
come from the activity. Due to insufficient space, the detailes
of all subscription type cannot be discribed. Other subscription
type can also be defined if user needs.

put()
:

InPort
get()
subscribe()
unsubscribe()

:

0..* 0..*

OutPort

RTComponent
rtc_start()
rtc_stop()
rtc_reset()
rtc_exit()
rtc_kill()

:

Fig. 5. UML Object Diagram of RT-Component, InPort and OutPort. One
RT-Component objects can have 0 and more InPort and OutPort.

As shown in UML Object Diagram of Figure 5, the relation
between RT-Component object and Inport/OutPort objects is
the composition. An RT-Component object manages object

1332

creation and destruction of InPort and OutPort. Other ob-
ject or software can ask the RT-Component what kind of
InPort/OutPort it has.

IV. COMPOSITE COMPONENT

A. Problems in Real-time Systems

Until now, based on the above-mentioned component frame-
work, some components have been developed and applied
to actual robots. In low level robot control software, they
have to be executed in real-time. It was verified that an RT-
Component can be a real-time process easily using ARTLI-
INUX. Some real-time RT-Components were developed and
they were executed in real-time respectively. However it is
not enough that each component is converted to real-time
RT-Component. It is not enough just to convert each RT-
Component, which constitutes a real-time system, into real-
time components respectively.

Now, as shown in Figure 6, we assume that three RT-
Components (A, B, C) which constitute a system are mutually
dependent on each components’ output. RT-Components (A,
B, C) are real-time component respectively, and their period
time is set to ∆t. In the best case (Figure 6), the system which
consists of component A, B and C is totally keep the deadline.
Generally, if the following task time T less than period time
∆t, the real-time task can keep deadline.

T =
n∑

i=0

Ti +
n−1∑

j=0

di < ∆t (1)

Here, Ti means the task time period of i-th component and
di means the data transfer time period between i-th component
and (i + 1)-th component.

In the worst case in figure 6, the system takes

TABC = 2∆t +
∑

i=A,B,C

Ti +
∑

j=AB,BC

dj (2)

for completion of a periodic task.
Considering a system to which n components were con-

nected in series, after the first component receives data before
the last component outputs data, it takes

Tworst = (n − 1)∆t + T. (3)

T is minimum task time of equation(1).
For example, assume that those three RT-Components (A,

B and C) are a manipulator component, controller component
and force sensor component respectively and force-controlled
manipulator system is realized by using these components.
Each component is executed in real-time as a 1 ms periodic
task. In this case, after getting the force value, it takes 2 +
tmanipulator ms to send reference value to manipulator, in the
worst case. It is clear that the stability of the system cannot be
guaranteed because cycle time is not controllable and depends
on the component execution timing.

B. Asynchronous/Synchronous Composite Component

To solve above mentioned problem, new framework for
composite component was implemented in RT-Middleware.

The composite components are roughly divided into “the
asynchronous composite component” and “the synchronous
composite component”. The composite components have the
following features,

• A composite component can include components to man-
age them.

• Internal components’ InPorts/OutPorts are delegated to
the composite component.

• A composite component manages activity states of inter-
nal components.

Moreover, the synchronous composite component has the
following features,

• Activity states of internal components are completely
synchronized.

• Activities of internal components are performed serially
in preconfigured order.

• If a thread that invokes each internal component’s activity
is running in real-time mode, and the response time
boundary of method invocation is given and is finite,
internal components can be a real-time control task.

The basic asynchronous composite component has the fol-
lowing features,

• States of an internal components do not necessarily have
a synchronization.

• Activities of internal components are performed in par-
allel.

Some types of the asynchronous composite component are
possible by the state transition handling type between internal
components and the composite component.

An asynchronous composite component, which includes
some children components, is handled as one RT-Component.
As shown in figure 2, if these components are running in mul-
tiple CPUs or multiple machines, these component processes
are executed in parallel and tasks are performed efficiently. If
these composite components have to be executed as a real-time
task, however, the above mentioned problem appears.

On the other hand, a synchronous composite component
executes child component activity processes in series and syn-
chronously. This means some component’s activities will be
executed in a same thread, as if children components activity
codes are written in a monolithic code. If a synchronous
composite component is executed in a CPU as a real-time
process/thread, child component processes are executed as if
they are real-time monolithic process/thread.

V. EVALUATION AND EXPERIMENT

A. Component Call Overhead

Evaluation of components’ activity method call overhead in
synchronous composite components was performed(Figure 7).
Some loadable components are loaded into the synchronous
composite component and method call time was measured.
Experiment was performed on Pentium4 2.8GHz PC with
ARTLINUX. Child components were executed in real-time as
a 1 ms periodic task.

1333

C

C

Time t

Time t

Period �t

Period �t

TA TB TC

d’ <dABAB

d’ <dBCBC

dBCdAB

A

A

B

B

Component A Component B

Component C

Best case

Worst case

Fig. 6. Combination of independent real-time RT-Component. Each RT-Component running in real-time. Activity execution timing is uncontrollable, because
their activities are invoked independently each other.

Component A

Component A’

Component B

Component B’

Component C Component C’Component D Component D’

Asynchronous Composite Component Synchronous Composite Component

A’
B’
C’
D’

A
B
C
D

Time t Time tmethod call overhead

Composite Component’s
Activity

activity
invocation

activity Bactivity A

activity C activity D

activity
invocation

activity
invocation

activity
invocation

Fig. 7. Asynchronous Composite Component / Synchronous Composite Component. Asynchronous composit component provides components grouping and
InPort/OutPort sharing functions. Synchronous composite component also provides them and serialized activity invocation. Its child components share their
activity.

Table II shows experimental result. in all case, All com-
ponents are executed in serial. From the mean execution-
time and the standard deviation of the table II, it turns out
that the deadline was kept in 1 ms. The call overhead per
one component, which is estimated from total call overhead
time, are from 2.6 to 4.8 ms. From these results, components’
activity call overhead is very small and neglectable.

From this experiment, even if the component was imple-
mented individually, two or more they can be combined if the
components are implemented as RT-Components. Moreover,
it was shown that these components were executed as if they
were one real-time task.

B. Force controlled manipulator system

A synchronous composite component was applied to force
controlled manipulator system. An end-effector force/torque
sensor component, a manipulator component, a joystick com-
ponent and a controller component are loaded into a syn-
chronous composite component. The synchronous composite
component was executed as a 2 ms periodic task in real-time.

As shown in figure 9,
1) End-effector force/torque sensor component,
2) Joystick component,
3) Controller component,
4) Manipulator component,

were executed in this order serially.

1334

TABLE II

EVALUATION OF METHOD CALL OVERHEAD OF SYNCHRONOUS

COMPOSITE COMPONENT. EACH COMPONENT’S ACTIVITY IS EMPTY.

Number of components 1 2 10

Mean execution time [ms] 1.00 1.00 1.00
Std. dev. [ns] 86.6 66.1 47.3
Total call overhead time [µs] 4.84 7.85 30.4

Call time per component
Call overhead time [µs] 4.84 2.62 3.04
Std. dev. [ns] 86.6 121 92.1

All components are executed in real-time Linux
(ARTLINUX) on PC (Pentium4 2.8GHz). Real-time period
was set to 2.00 ms because of manipulator’s motion controller
board period.

End-effector force sensor

Joystick

Manipulator
Controller

(Damping control)

Real-time loop

A Synchronous Composite Component

Force/Torque
(TimedFloatSeq type)

End-effector velocity
(TimedFloatSeq type

Force/Torque
(TimedFloatSeq type)

2

3
4

1

Fig. 8. Manipulator force control system by using Synchronous Composite
Component: upper-left number means execution order.

Joystick

End-effector
force/torque sensor

Manipulator

Fig. 9. Endeffector force srnsor, manipulator, joystick.

Table III shows task execution time statistics in this exper-
iment. You can find the real-time task, which includes four
components’ activity, keeping 2 ms period. In the experiment,
when force was applied to end-effector force/torque sensor,
it was confirmed that an end-effector position moves in the
direction of force. When force was applied to the joystick, it
was confirmed that the end-effector position of the manipu-

TABLE III

EXECUTION TIME OF FORCE CONTROLLED MANIPULATOR SYSTEM.

Task period time 2.00 ms
Maximum execution time 2.01 ms
Minimum execution time 1.99 ms
Mean execution time 2.00 ms
Standard deviation 4.41 µs

lator moves similarly. It was confirmed that force control is
performed stably in these case.

The point is that these three devices components and one
control component are not a monolithic program but programs
completely created separately. Furthermore, it is important that
these components were executed synchronously as a real-time
task.

VI. CONCLUSION

In this paper, the necessity for the systematic methodology
for constituting and integrating a robot system was discussed at
first. Moreover, the necessity for a platform “RT-Middleware”,
which supports system integration in implementation level,
was described.

New component framework “Composite Component” in
RT-Middleware are introduced. It was shown that composite
component framework, which realizes low level and real-time
composition of independent RT-Components.

Finally, evaluation experiments were performed, and it was
confirmed that the performance of the new framework, which
executes some independent components in real-time, is high
enough to be able to apply it to robot control.

In this paper, we focused attention on the RT-Middleware
concepts and the RT-Component object model as main topic.
To apply this framework to various real-time robotic systems
and evaluating the performance of this framework will be
performed in future work.

REFERENCES

[1] M.Mizukawa, H.Matsuka, T.Koyama, T.Inukai, A.Noda, H.Tezuka,
Y.Noguchi, N.Otera, “ORiN Open robot Interface for the Network – The
Standard Network Interface for Industrial robots and its Applications –”,
ISR2002, No.45

[2] Makoto Mizukawa, Hideo Matsuka’ Toshihiko Koyama, Toshihiro
Inukai, Akio Noda, Hirohisa Tezuka, Yasuhiko Noguchi, Nobuyuki
Otera, “ORiN: Open Robot Interface for the Network – The Standard
and Unified Network Interface for Industrial Robot Applications –”,
SICE Annual Conference 2002, pp.1160-1163, Osaka

[3] Orocos: Open Robot Control Software. http://www.orocos.org
[4] C. Schlegel, R. Worz, “The Software Framework SmartSoft for Im-

plementing Sensorimotor Systems”, IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS ’99, pp.1610-1616, Kyongju,
Korea, October ’99

[5] Fumio OZAKI, ”Open Robot Controller Architecture (ORCA)”,
IROS2004 Workshop on Robot Middleware toward Standards,

[6] Fumio OZAKI, “Open robot controller archtecture (ORCA)”, AIM2003
Workshop: Middleware Technology for Open Robot Architecture

[7] Kohtaro SABE, “Open-R : An Open Architecture for Robot Entertain-
ment” , AIM2003 Workshop: Middleware Technology for Open Robot
Architecture

1335

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

