
Part1: About OpenRTM-aist
and

Outline of RT-Component Programming

National Institute of Advanced Industrial Science and
Technology (AIST), Japan

Industrial CPS Research Center
Software Platform Research Team, Team Leader

Noriaki Ando, Ph.D.
1

Sep. 23rd, 2020
SICE AC 2020 RT-Middleware Tutorial

Outline

• Basic concept and overview of RT-
Middleware

• Comparison with ROS
• Activities of RT-Middleware

community
• RTC development overview
• Conclusion

2

What is RT-Middleware?

3

• RT = Robot Technology cf. IT
– not only standalone robots, but also robotic elements

(sensors, actuators, etc….)

• RT-Middleware
– middleware and platform for RT-element integration

• RT-Component
– basic software unit in RT-Middleware

RT-Middleware

+ + + + +

What is RT?

RT-Middleware developed by AIST

OpenRTM-aist

About Robot Middleware
• Platform software that provides common

functions to streamline robot system construction
– Sometimes called "robot OS"
– Commonization and standardization of interface and

protocols
– Examples

• Providing modular or componentized frameworks
• Supports communication among modules
• Provides parameter setting, deployment, startup, and

module composition functions
• Realize inter-OS and inter-language cooperation /

interoperability by abstraction
• Development became active from around 2000

– Various middleware is being developed and released all
over the world

5

6

Conventional systems

Controller

Controller
software

Compatible interfaces are connectable

Robot Arm
Control software

Robot Arm1

Robot Controller Program

Target Robot

7

Each robot has each control interfaces.
If no compatibility, cannot connect each other.

Robot Arm2

Robot Arm2

Controller
software

Humanoidʼs Arm
Control software

Robot Arm
Control software

Conventional systems

Controller

Robot Controller Program

Target Robot

Target Robot

8

compatible
arm interfaces

RTM provides a common I/F for
connecting separately made
software modules

Improved software reusability
Easy to build RT system

Controller
software

Arm A
Control software

Arm B
Control software

By using RT-Middleware

Robot Arm2

Robot Arm1

Controller

Robot Controller Program

Target Robot

Target Robot

Trend of Robot Software Development
Component Oriented DevelopmentConventional Style

Camera Mic Actuator Speech

Stereo vision InteractionSpeech
Recognition

Image
Recognition

Middleware

Stereo vision

InteractionSpeech Recog.

Image
recognition

Camera

Mic Actuator

Speech

 Integrated design of various functions
 High run-time efficiency, but inflexible
 Development becomes difficult as the

system becomes more complex

 Division/integration of large-scale complex
functions

 Improvement of development and
maintenance efficiency (reuse of functions,
etc.)

 Increased system flexibility

9

The benefits of modularization
• Reusability

– A component can be reused in various systems.
• Diversification

– Various type of same functional modules can be tried
in systems.

• Flexibility
– System structure can be changed easily.

• Reliability
– Easy to test a module and well tested modules are

reliable.
• Durability

– Well divided and independent module error does not
affect too much to whole systems.

11

The benefits of RT-Component model

• Provides rich component lifecycle to enforce
state coherency among components

• Defines data structures for describing
components and other elements

• Supports fundamental design patterns
– Collaboration of fine-grained components tightly

coupled in time (e.g. Simulink)
– Stimulus response with finite state machines
– Dynamic composition of components collaborating

synchronously or asynchronously

Inactive Active

Error

Life cycle management, core logic execution

Common state machine

Sensor RTC

Composite execution
Real-time execution

Controller RTC

Actuator RTC
Encoder

component

Actuator
Component

Controller
Component

1
TI s
TDs

Kp+
-

Referencepos

pos

torque

• Data centric communication
• Continuous data transfer
• Dynamic connection/disconnection

Data-centric communication

• User defined interface
• Access to detailed functionality of RTC

– Getting/setting parameters
– Changing modes
– etc…

Image
data

3D depth
data

Stereo vision
interface

・set_mode()
・set_coordination()
・do_calib()
・etc…

Service port

Stereo Vision
Component

Data port

Service oriented interaction

Name

Value
Set name

Name

Value
Set name

• Function for internal parameter
• Multiple parameter sets
• They can be changed from remote in run-time

Activity, Execution context Data Port

Service Port Configuration

Ex. Servo control

Ex. Stereo vision RTC can have several
configuration sets.
Runtime reconfiguration
and dynamic switching
are supported

Main features of RT-Component

Advantages of RTM based development

13

ℓ1

ℓ2
θ2

(x , y)
θ1

Reusable RTCs Develop from
scratch

Self development
using existing

libraries

3D cameraPoint Cloud

Grasping
strategy Planning

Inverse
kinematics

Arm control Gripper control

By using RTM,
existing module can
be reused

Reduce development
from scratch

Bin-picking robot example
* This diagram is simplified version

RTM based Distributed Systems

RTCRTC

RTM

Windows

RTCRTC

RTM

uITRON

RTCRTC

RTM

Linux

RTCRTC

RTM

VxWorks

RTCRTC

RTM

QNX

RTCRTC

RTM

RT Linux

RTC

Application Input device Sensor

Robot A Robot B
Robot C

Network

RTM can manage
distributed RTCs
implemented by
various languages
or executed on
various OSs
on the network

Connections
Between RTCs
Can be established
dynamically

15

The aim of RT-Middleware

Problem Solving by Modularization
• 仕様の明確化

• 最新技術を容易に利用可能

• 誰でもロボットが作れる

Realize
low-cost robots

Satisfy
various needs

Cost Technical Issue Needs

！ ！ ！ ！

The state of
the art

Mobile base Manipulator Sensors・・・
Various users

System developers
Easy to customize

RT-Component

Utilize
the state of the art

Robot System Integration Innovation

Reusable modules

Spec.

Practical/commercialization examples

Robot operation simulator: NEDO

S-ONE︓SCHAFT
DAQ-Middleware: KEK/J-PARC
KEK: High Energy Accelerator Research Organization
J-PARC: Japan Proton Accelerator Research Complex

HIRO, NEXTAGE open: Kawada Robotics

HRP series: KAWADA and AIST

TOYOTA L&F︓Air-T

VSTONEʼs education robots OROCHI（RT corp.）
16

THK: SIGNAS system

RTM as a International Standard

Implementation Vendor Features Compatibility

OpenRTM-aist AIST Reference implementation by AIST ---

HRTM Honda R&D ASIMO is now moving to HRTM ◎

OpenRTM.NET SEC .NET(C#,VB,C++/CLI, F#, etc..) ◎

RTM on Android SEC RTM implementation for Android ◎

RTC-Lite AIST Tiny implementation on PIC and
dsPIC

〇

Mini/MicorRTC SEC RTM/RTC for CAN and Zigbee 〇

RTMSafety SEC/AIST Functional safety standard capable
RTM implementation

〇

RTC CANOpen SIT, CiA RTM for CANOpen standard 〇

PALRO Fujisoft Yet another C++ PSM implementation ×

OPRoS ETRI Implementation of Korean national
project

×

GostaiRTC GOSTAI,
THALES

C++ PSM implementation on a robot
language

×

Standardized by OMG process
→ It can not be modified by just one company
→ Various compatible implementation
→ It promoted competition and interoperability

OMG Standard

Users can chose and continue to use
on of the RTM implementations

Ten or more RT-Middleware implementation exist

History
• September, 2005

Request for Proposal issued (starting standardization)
• September, 2006

Specification approved by OMG
• April, 2008

OMG RTC ver.1.0 released
• September, 2012

Updated to ver. 1.1
• September, 2015

FSM4RTC (FSM based RTC standard) adopted

Comparison with ROS, and trend

18

ROS and RTM
Pros of ROS
• Design policy based on UNIX

culture
– Officially supports only Linux
– ROS2 supports Windows and

MacOS
• Original package management

systems
• Abundant quality and quantity of

nodes (components)
– Many nodes whose quality is

directly controlled by OSRF
• Large number of users
• Discussions such as forum and

ML are open and active
– Sometimes core libʼs specification

moves by users opinion
• Large number of English

documents

Pros of OpenRTM
• Many OS/Language support

– Windows, Linux (and other UNIX),
MacOS, Real-time OS (VxWorks, QNX)

– Windows native support
• Mainly spread in Japan

– Japanese document, ML, tutorials
– Less numbers of users

• GUI tools for beginners available
– Eclipse based tools officially provided
– CUI tools also available (rtshell)

• Standardized specification
– Open revision procedure at OMG
– Third-party implementation is

welcome
– Some compatible implementations

exist
• Well-defined component model

– High affinity with object-oriented, UML
and SysML design

– Model-based development
• IEC61508 functional-safety

certification ready
– RTMSafety by SEC corp.

19

From ROS1 to ROS2
• When they undertook NASAʼs work, ROS original

messaging protocol was not allowed to use. So
prototyping was implemented in ROS, but they are re-
implemented from scratch in the final product.

• DDS (Data distribution service, which is one of the OMG
standardized messaging protocol) was used, because
the only standardized protocol is allowed in NASA.

• There are inconvenient constraints such as no
component model exists, only one-node-one-process
model is allowed, ROS-masterʼs SPOF (single point of
failure) problem.

• Therefore, ROS2 is completely new implementation to
overcome these problems, so no compatibility between
ROS1 and ROS2.

20

ROS2
• Current release︓Foxy Fitzroy, June 5th, 2020
• Use of standardized middleware

– Stop reinventing the wheel
– Communication middleware is DDS standardized in OMG

• Component model is introduced
– Suitable for embedded use and performance effective

architecture like RTC
• Expansion of supported OS

– ROS1 only supports Linux (only Ubuntu Linux supported)
– Windows and MacOS support are added in ROS2
– But no support for commercial real-time OS such as

VxWorks, QNX

21
http://design.ros2.org/articles/ros_middleware_interface.html

Communication middleware standard with a proven track
record in aviation, military, medical, railway, etc.

RT-Middleware community

22

Project web pages
• Users can upload

their own RTCs on
the openrtm.org

• Users can search
and download other
users RTCs

23

Project type Number
RT-Components 405

RT-Middleware 14

Tools 19

Documents 4

Hardware related
RTCs

28

RT-Middleware Summer Camp
• 1 week camp every summer
• This year: August 24-28

– The first online camp
• Number of participants: 11
• Venue: AIST Tsukuba

center (Tsukuba city, Ibaraki pref.)
– Onlie (Zoom)

• Lectures, practical work and
presentation by five teams.

• Staying in the AIST’s
accommodation and coding
endlessly every night :-P.

24

RT-Middleware Contest
• Held as an organized session in SICE

SI conference
– Various prizes
– Entry deadline: Sep. 23rd
– Software registration：Oct.
– Paper submission due: Oct. 26th

– Online examination：from end of Nov.
– Presentation and award ceremony: Dec.

• Record of year 2019
– Number of applications ：11
– SICE RT-Middleware award x1
– Product supporting award x2
– Company supporting award x9
– Personal supporting award x10

• See more details: openrtm.org
– Menu: community -> events

25

RTC development overview

Framework and core-logic

ステレオビジョン
ルゴリズムア

コアロジック

右目画像左目画像

デプスマップ

RT ンポーネント
レームワーク
コ

フ

RT ンポーネント
準インターフェース

コ
標

ステレオビジョン
RT ンポーネントコ

RT ンポーネント
準インターフェース

コ
標

右目画像左目画像

デプスマップ

＋ ＝中身は空

RTC framework ＋ Core logic ＝ RT-Component

RT-Component
framework

Core-logic

Stereo vision
algorithm

RTC standard
interfaces

RTC standard
interfaces

Stereo vision
RT-Component

empty

Left image Right image Left image Right image

Depth map Depth map

Code generation by model

28

RTC’s specification
MyComp
temp.sensor device
temp. sensor RTC
STATIC
PERIODIC
mode:TimedBool
temp: TimedDouble

name:
category:
description:
comp_type:
act_type:
InPorts:
OutPorts:

RTCBuilder (Template code generator)

C++
backend

Java
backend

Python
backend

RTC source
for C++

RTC source
for Java

RTC source
for Python

class MyComp
: public DataflowComponent {
public:
virutal onExecute(ec_id);
:

private:
TimedBool m_mode;
TimedDouble m_temp;

};

import RTC.DataFlowComponent;
public class MyCompImpl
extends DataFlowComponent
{
public ConsoleInImpl(mgr)
{
}

:
};

#/usr/bin/env python
import RTC
class MyComp(

DataFlowComponent):
def __init__(self, manager):
:

def onExecute(self, ec_id):
:

Same (model)
component will be

generated by same
specification, even if

implementation
languages is different

Core-logic is
embedded to
the template
code

Implement the
procedure in a
specific function
of the
generated class

RTC development flow

29

RTBUilder CMake Visual C++

Input spec of RTC Generating VC project
or Makefile

Implement logic
and compile

RTBUilder CMake
make

+
gcc (g++)

Windows

Linux

Almost all steps are the same, except compiler

CMake
• Open source software for compiler-

independent build automation
• Can generate build files for different

development environments on
different operating systems

• Generate Makefile on Linux
• Generate VC (Visual C++) project file

on Windows
• Most of the recent open source

software is built with CMake.
30

State machine and lifecycle of RTC

ActiveDo/RTC::onExecute() callback
function is here

You don’t need to aware here

Be aware state here and
its callback functions.

3232

Activity (Callback functions)
Callback functions Meanings

onInitialize Initialization

onActivated Called once when RTC is activated

onExecute Called periodically when RTC is in the active state

onDeactivated Called once when RTC is deactivated

onAborting Called once when entering ERROR state

onReset Called once when resetting

onError Called periodically when RTC is in the error state

onFinalize Called once when finalizing RTC

onStateUpdate Called after onExecute everytime

onRateChanged Called when ExecutionContext’s rate is changed

onStartup Called once when ExecutionContext starting

onShutdown Called once when ExecutionContext stopping

InPort
• InPort

– Input port for data flow type
communication

• Methods of InPort class
– isNew(): check if new data

arriving
– read(): retrieve data from

InPort buffer to the variable
bound to the InPort

– >> : same as above リングバッファ

バインドされた変数

read()

operator>>

最新値

InPort

Robot
Component

Sensor Data

ExampleBasically paired with OutPort

Data ports (InPort/OutPort)
must have the same type

OutPort

リングバッファ

バインドされた変数

write()

operator<<

OutPort

最新値

Sensor
Component

Sensor Data

例Basically paired with InPort

Data ports (InPort/OutPort)
must have the same type

• OutPort
– Output port for data flow type

communication
• Methods of OutPort class

– write(): push data from
OutPort’s variable into
OutPort’s buffer to be
published to the remote
InPort

– << : same as above

Recommendation
• Letʼs stop reinventing the wheel!!

– Code that has been executed thousands of times by
different people works better than your code from
scratch!!

– Let's write the code you really need to write and borrow
the other non-essential part for you.

– A program released by someone is a program that has
worked once!!

– Other persons code is hard to read, but you shouldn't
throw it away for that reason!!

• Commit to open source projects!!
– Don't hesitate to ask questions on ML and forums!!
– No matter how rudimentary a question is, it is valuable

information for others.
– Letʼs complain to the project!! (good feedback grow the

project)
– Debug and send patches if you can!!

35

Conclusion
• Basic concept and overview of RT-

Middleware
• Comparison with ROS
• Activities of RT-Middleware

community
• RTC development overview

36

NEXT
• Part2: Introduction to

creating RT-Component
– Lecturer: Nobuhiko Miyamoto

• Please check your
development environment
– Did you install OpenRTM-aist

and other dependent software?
– During lunch time, staffs

support installation, if you do
not install them yet.

– If you have any question,
please call us via Zoomʼs chat
or Slack.

37

We will create a robot
controller for mobile robot and
connect it to Raspberry Pi
Mouse mobile robot
component in the simulator.

