robotics/2012-12-14

Cloud Networked Robotics and Acceleration Based Sensing

Miwako Doi, Toshiba Corporation Tokyo, Japan Robotics DTF, OMG Dec. 11, 2012

Mega Trends

Economic developing center shifting to developing countries

Market center shifting to developing countries

developing countries

(source:World Energy Outlook 2010

Energy expenditure center shifting to developing countries

Sharply-rising energy expenditure in developing countries

Dwindling birthrate and an aging population in industrial countries

Developing countries follow 30 or 40 years behind in industrial countries

(Source: United Nation World Population Prospect 2008)

Cloud Networked Robotics

Figure 1. In Cloud Networked Robotics, a platform layer located between service applications and robotic components isolates and coordinates them to realize multi-area, multi-robot networked robotic services.

Courtesy of Dr. Kamei

IEICE Technical Committee on Cloud Networked Robotics

- Interaction between heterogeneous robots
- Interaction between human and robots
- Cloud data collaboration for networked robots

http://www.ayu.ics.keio.ac.jp/cnr/

IEICE Technical Committe	e Submission S	ystem
Conference S	Schedule	
Inf. & Sys. Society 🚽 Cloud Network Robatics (CNR)	▼ Latest ▼	[Japanese] / [Fr

D: Inf. & Sys. Society 🔻	Claud Network Rabatics (CNR)	▼ Latest ▼	[Japanese] / [English]
ALL Places 🔻	(🗹 Committee/Place/Topics)Press-> Search	
(Paper Keywords:	📝 Column: 🗹 Title 🔽 Auth. 🗹	Affi. 🗹 Abst. 🗹 Keyword)Pres	ss-> Search

Technical Committee on Cloud Network Robotics (CNR) (2012 -)

Chair: Yuichiro Anzai (Keio Univ.) Vice Chair: Norihiro Hagita (ATR), Miwako Doi (Toshiba) Secretary: Michita Imai (Keio Univ.), Takahiro Miyashita (ATR) Assistant: Hitoshi Tomita (Hitachi), Hiroshi Sugiyama (Toshiba), Toshiyasu Nakao (NEC)

[Go to Official CNR Homepage]

Schedule	(Sort by:	Date	Descending)
Results 1 -	4 of 4		

Sort by: Date Descending 🔻

20 Results 🛛 🔻

Date	Place	Topics	Joint	Deadline	Select Menu
Mon, Feb 18, 2013	<u>Kikai-Shinko-</u> <u>Kaikan Bldg</u>	Cloud Network Robot Service, etc		[Mon, Dec 10]	 <u>Detailed Info.</u> (Japanese) Regist. Closed
Fri, Dec 7, 2012	<u>Tsukuba Univ.</u>			[Wed, Oct 24]	Detailed Info. (Japanese) Regist. Closed Adv. Program
Thu, Oct 11, 2012 - Fri, Oct 12	<u>OIST (Okinawa)</u>			[unfixed]	Detailed Info. (Japanese) Regist. Closed Adv. Program
Mon, Jun 25, 2012	<u>Keio Univ. (Hiyoshi)</u>	Cloud Network Robot on a Living Environment, etc.		[Tuc, Apr 10]	Detailed Info. (Japanese) Regist. Closed Adv. Program

Brains on Clouds

- Cleverbot <u>http://www.cleverbot.com/</u>
- Siri (Speech Interpretation and Recognition Interface)
- しゃべってコンシェルShabette_concier

• Animetrics

http://animetrics.com/cloud-face-recognition-services/

TOSHIBA Leading Innovation >>>

Elements of Cloud Networked Robotics

- Data sensing
- Recognition
- Data mining
- Visualization and feedback
- Modeling
- Simulation
- Prediction
- Control
- Actuation
- Utilization
- Harmonization with human and robots

Related Works on Activity Recognition (1)

Many sensors need to be installed in the environment.

→ too costly to implement

Related Works on Activity Recognition (2)

• are equipped with sensors such as an accelerometer and a GPS.

Problems for Activity Recognition @ Smartphone

Problem 1: Focusing only outdoor migration activities (Related works)

走

NTT DoCoMo (2006)

 表9:釈迦の推定性能[%]

 歩
 転
 電
 バ
 車

 0.1
 0.0
 0.0
 0.0
 0.0

IF.

疋	99.9	0.1	0.0	0.0	0.0	0.0	0.0
歩	0.0	96.3	0.3	0.2	2.6	0.0	0.4
転	0.0	0.0	88.9	0.0	0.0	11.1	0.0
電	0.0	0.0	0.0	84.6	6.0	0.0	9.4
バ	0.0	0.0	0.0	2.1	97.9	0.0	0.0
車	0.0	0.0	0.0	0.0	0.0	92.4	7.6
止	0.0	0.0	0.0	0.0	0.0	6.1	93.8

KDDI (2008)

- It was difficult to recognize various indoor activities.

Objective 1: Recognizing various indoor activities (ADL and IADL)

Problem 2: Power consumption

Objective 2: Developing a low power consumption algorithm

Indoor Activity Recognition @ Smartphone

Recognizing various indoor activities (ADL and IADL)

- Using not only an accelerometer but also a microphone
 - Hybrid activity recognition focused on the sound

Developing a low power consumption algorithm

Rough classification of movement by acceleration

- "Walking," "Quiet," and "Performing a living activity"

Classification of the nature of the task by sound

Data	Resolution, Sampling Frequency	Data size per 1 sec. (Bytes)		
3-axis acceleration	10bit, 20Hz	75		
Sound	16bit, 16kHz	32,000		

Indoor-Outdoor Activity Recognition @ Smartphone

Indoor-Outdoor Activity Recognition by a Smartphone

	03/16 11 Actub	Analyzer	Activity:	н	airdrier
Place:				Stop Re	ceiving
Raw result					
Basic ac		Walking	5	tay	Boarding
Working	activitie		_		Boarding

489.

وراجه المراجعة

give Bishing

Features

- Recognizing various indoor-outdoor activities in real time by using a commonly-used smartphone
 - Sensors
 - 3-axis accelerometer, microphone, GPS
 - Combined an indoor living activity recognition engine and an outdoor migration activity recognition engine
- By switching between the 2 engines depending on an acquisition condition of GPS satellites
 - Enables users to continuously recognize indoor-outdoor activities
- A transmitting function to a cloud server or an external terminal via 3G networks or Bluetooth[™]
 - In anticipation of various practical services

Processing Flow

Indoor Living Activity Recognition Engine

- 1. Roughly classifies the user's movement into "Resting," "Walking," and "Performing a living activity"
- 2. When it classifies "Performing a living activity," it activates the microphone to recognize various living activities.

Movement Classification by Acceleration

• Low throughput algorithm

- 10bit, 20Hz sampling
- Using variances of 1-sec data series

Outdoor Migration Activity Recognition Engine

Evaluation Experiment

- Indoor Living Activity Recognition
 - 21 subjects
 - 6 men and 6 women in their 60s
 - 5 men and 4 women in their 20s to 40s
 - @ a mock living room

Target living activities

- "Washing dishes," "Ironing," "Vacuuming," "Brushing teeth," "Hair drier," and "Flushing the toilet."
 - First, they performed each activity for 10 seconds.
 - Then, we directed them to perform all the target activities.
 - We did not direct them how to spend the intervals between the target activities.
 - An untrained task might occur during the intervals.
 - It should be considered to be an untrained task.

Indoor Living Activity Recognition Accuracy

Outdoor Migration Activity Recognition Accuracy

• Trial subjects carry the cellular phone in daily life

- Number of subjects: 4 (our project members)
- Total number of hours: 56 hours 31 minutes

		Running	Walking	Resting	Boarding
Est	Running	92.5	0.0	0.0	0.0
Estimated	Walking	7.4	99.4	1.1	1.4
ted	Resting	0.0	0.1	97.5	2.6
l result	Boarding	0.0	0.4	1.3	95.6
ult	Unknown	0.1	0.1	0.1	0.3

Correct answer

Future Work

• Performance evaluation in an actual usage environment

- Recognition accuracy
- Power consumption
- Considering the measures in case that users doesn't carry their smartphone on them inside the house
 - Use of sensors equipped with commonly-used digital products and home appliances

• A number of business under consideration

- Tele-monitoring service
- Healthcare service
- Energy saving in cooperation with HEMS
- Routine inspection task support system
- BEMS, Smart office, etc.

Hand held IF Robot : ApriPetit[™]

Hand held size

Image processing inside and speech processing cloud

Thank you.

TOSHIBA Leading Innovation >>>

This research was partly supported by Ministry of Internal Affairs and Communications