
Ando, N. et al.

Paper:

Software Deployment Infrastructure for
Component Based RT-Systems

Noriaki Ando∗, Shinji Kurihara∗, Geoffrey Biggs∗, Takeshi Sakamoto∗∗,
Hiroyuki Nakamoto∗∗∗, and Tetsuo Kotoku∗

∗Intelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan

E-mail: n-ando@aist.go.jp
∗∗Technologic Arts Inc., Cosmos-Hongo 9F, 4-1-4 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

∗∗∗System Engineering Consultants Co., Ltd., Setagaya Business Square, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097, Japan
[Received October 12, 2010; accepted February 7, 2011]

In component-based Robotic Technology (RT) sys-
tems, launching the system involves installing compo-
nent binary files to the target computers, instantia-
tion of components, and establishing connections be-
tween components. In order to operate RT systems
with many CPU nodes effectively, the deployment fea-
tures provided by the middleware are important. De-
ployment means system life-cycle management, in-
cluding software installation, configuring components,
and launching components. In this paper, we de-
scribe deployment tools for RT systems. The compo-
nent deployment functionality is realized based on the
OMG Robotic Technology Component (RTC) specifi-
cation [1]. Description formats are defined, a service
interface is designed and tools are implemented using
the OpenRTM-aist that is the implementation of the
OMG RTC specification. The implemented deploy-
ment infrastructure is evaluated and discussed, and is-
sues and potential future work are considered.

Keywords: software deployment, software platform, dis-
tributed systems, RT-middleware, RT-component

1. Introduction

Next generation robots are still lacking in functional-
ity, have too wide a variety of uses, suffer from a high
cost of development and price, and face issues in safety.
As a result, few of them have satisfied quality and price
needs well enough to be marketed as commercially avail-
able products. Since the killer application for next gen-
eration robots is not yet clear, it is important to develop
markets in the same way as information technologies such
as personal computers did in the past: through radical in-
novation [2] in which open modular technologies allow
various applications to be trialed so as to explore promis-
ing robot uses.

This environment encourages, in Japan and in other
countries, the research and development of software plat-

forms which promote modularized robots functionalities,
also known as Robotic Technology (RT), and easier de-
velopment of inexpensive, flexible robot systems [3–9].

In this paper, we will discuss the installation, configura-
tion, and launch of components in robot systems consist-
ing of multiple CPU nodes and multiple software compo-
nents, (the deployment RT-systems) and propose the fea-
tures necessary to achieve this. In Section 2, we describe
the process of general software deployment. In Section 3,
we discuss the required deployment framework for robot
systems. In Section 4, on the basis of the discussion in
Section 3, we define services for component deployment
in OpenRTM-aist, the authors’ component framework. In
Section 5, we implement and evaluate the effectiveness of
the services. In Section 6, we give conclusions and dis-
cuss future challenges.

2. Software Deployment

The installation, configuration and launch of software
such as executable files and modules onto target comput-
ers are collectively referred to as deployment.

Well-known generic deployment standards include the
Java-specific J2EE Deployment Specification [10], OSGi
(Open Services Gateway initiative) [11], and the De-
ployment and Configuration Specification [12] issued by
OMG (Object Management Group). Fig. 1 shows a gen-
eral outline of deployment features common to these sys-
tems.

The deployment process in Fig. 1 will be explained
based on the terms defined in [12, 13]. In the first step,
installation, a developed piece of software is released in
a package including binary files and meta data describ-
ing its components. This is placed in a preparation area
called a repository. The second step is the planning pro-
cess, in which a plan is created describing how to execute
the software in the target environment, including where
each piece of software will be deployed and how they will
be connected. In this step, information on deployment,
connections, and configuration is described using XML,

350 Journal of Robotics and Mechatronics Vol.23 No.3, 2011



Software Deployment Infrastructure for Component Based RT-Systems

Target
Environment

Target
Environment

RepositoryPackage
Package
Package
Package

Package

Package

Component

Instance

Component

Instance

(4) Launch

(4) Launch

(3) Installation/configuration

(2) Planning

Configuration

Development

(1) Release/installation

Trash

(5) Retire

Application

Fig. 1. General software deployment process.

script languages, or similar methods.
During the launch step, components are instantiated

and connected based on the previously-created plan and
the system is launched. When terminating an application,
its components are de-activated. In contrast to standard
software release processes, deleting a package that has
became old and unnecessary from the repository is called
un-installation, and it is at this point that the software is
retired and its lifecycle ends.

3. Deployment in RT Systems

This section discusses the functionality required for the
deployment of RT systems.

3.1. Characteristics of RT Systems
RT systems recently tend to be decentralized due to a

reduction of CPUs in size and price, and the development
of networks. In addition, in a system with many external
sensors working together, such as networked robots, sen-
sor nodes, robots, and other pieces of hardware are often
incorporated into or removed from the system dynami-
cally.

Unlike software for simple distributed systems, there-
fore, sensors and actuators connected to the computer, de-
vices that combine them, and even environmental infor-
mation from outside the devices can be a target for the
software to manage. In short, a more dynamic resource
management system is necessary.

Furthermore, in RT systems there are mixed structures
with various densities and sizes, from real-time control
requiring components to be tightly-coupled to a service-
oriented, loosely-coupled structure used in the higher lay-
ers of the system.

On the basis of such characteristics, we will now dis-
cuss the necessary functionality for deployment of RT
systems in terms of the lifecycle from system design,
through component implementation, to system operation.

3.2. Component Lifecycle
We will now outline the lifecycle of components, which

are the smallest indivisible unit in a system.
First, the detailed functionality of each component is

determined based on splitting the requirements and design
of the system into modules. The components are imple-
mented according to their designs, tested, packaged, and
then installed in suitable locations.

The installed components are set up and activated
based on the pre-planned system when the application is
launched. In addition, the configuration of the RT system
must be dynamically changed during operation based on
the occurrence of relevant events. After that, termination
of the application causes all the activated components to
stop. Finally, unnecessary components are un-installed.

When the application is launched, it is necessary to ob-
tain information as to whether components to be used are
available and resources have been secured in the target
environment. A middleware is necessary to provide these
functions.

3.3. System Lifecycle
The lifecycle of a component-based software system

begins with designing the overall system, continues with
dividing functions into modules according to the design,
and then on into a design process for these components.

When building the system by combining the individ-
ual components, even if there are no components actually
operable, most parts of the system can be designed in ad-
vance, as long as there are specifications (profile informa-
tion) of the components available.

Based on the information in the pre-created plan, com-
ponents are installed and instantiated and connections be-
tween components are established on relevant nodes at
launch of the system. Components are dynamically gen-
erated and destroyed as necessary after system launch ac-
cording to the operational scenario. After terminating the
system, relevant components are stopped and terminated.

As described above, robot systems are required to
achieve both loose coupling and tight coupling between
components and dynamic configuration changes in the
system. The ability to launch components on a node in
real-time is necessary. Fine control is needed for de-
ployment, for example, components required to be tightly
coupled must be launched in a same process, while other
components may be launched in separate processes in or-
der to prevent interference between the components. In
addition, these component deployment operations need to
be executed on many nodes in the network.

3.4. Existing Middleware and Deployment
Many existing robot middlewares provide a function

equivalent to deployment. For instance, ROS provides a
command called roslaunch, which sets and launches lo-
cal or remote nodes (the name for components in ROS)
through SSH (secure shell) [4]. OPRoS uses a tool called
TaskInterpreter to execute tasks, and provides the OPRoS

Journal of Robotics and Mechatronics Vol.23 No.3, 2011 351



Ando, N. et al.

TaskExecutor RemoteController, a GUI client for Task-
Interpreter [6]. An API (Application Programming Inter-
face) related to deployment and configuration is defined,
which is called from unique script languages to load and
launch components. It also has an XML-based configu-
ration system. A deployment system called Ice (Internet
communication engine) Grid, part of the Ice distributed
object middleware, is used to launch components from a
command line.

4. Service and Data Model

On the basis of the above, we will now discuss what
is necessary to install, set up, and launch RT-Components
(RTC) and to launch the whole RT system.

For installing components from remote locations, ob-
taining the profile of the components, launching and ter-
minating the components, and so on, a service operating
in the target environment is necessary. In addition, a client
application or a tool is necessary to send a command to
this service to perform a predetermined operation.

For obtaining information about installed components,
a specification description format of the components, a
tool to fetch information from a module, and so on are
necessary. In addition, a data structure for system descrip-
tion which describes deployments and connections of the
components and can be used for planning must be defined.

Based on this, the following elements necessary for de-
ploying components on the RT system are realized in this
paper.

1) Component profile
2) System profile

3) RT-Component (RTC) manager service
4) Various tools

4.1. Component Profile
Prior to the launch of the system, it is necessary to ob-

tain information about the components to be used in ad-
vance when planning. This information includes 1) infor-
mation on the type of components, which pertains to the
type before instantiation and 2) information on the com-
ponent instances, which depends on each instance and its
use.

In the case of RT-Components (RTC), an interface to
obtain the information in 2) is defined in [1]. On the
other hand, although the information in 2) is only used
by the information in 1) currently, there should only be an
amount of information necessary to provide the developer
with sufficient information available for planning.

We define a component specification description called
the RT-Component (RTC) Profile to describe the infor-
mation in 1). The RTC Profile is a component specifica-
tion description method for component design, template
source code generation, as a template for document de-
scription, for offline design of the system, as meta-data
for deployment, and as a template for re-use.

rtc_profile basic_info

actions

configuration_set configuration

data_port

service_port service_interface

1

1

0..1

0..*

0..* 0..*

0..*

class RTC Profiles

Fig. 2. RTC Profile class diagram. RTC Profile defines data
structure for a component description.

Table 1. The RTC Basic Profile::basic info definition.

Element name Description
name The name of the RTC
componentType The type of the RTC
category RTC categorisation
description Brief description of the RTC
executionRate Frequency of execution of the RTC’s

behaviour
executionType Type of execution

(periodic, externally-triggered, etc.)
vendor RTC vendor
version Version number

The RTC Profile has the following three parts: i) RT-
Component (RTC) Basic Profile; ii) RT-Component
(RTC) Document Profile; and iii) RT-Component (RTC)
Extended Profile. Fig. 2 shows the data model of the RTC
Basic Profile.

As shown in Fig. 2, the Basic Profile includes the
basic meta-information of the RTC, with elements such
as basic info, actions, configuration set,
data port, service port, with “rtc profile”
as the root node.

Table 1 shows some attributes and their meanings as an
example. The basic info holds basic profile informa-
tion of the RTC. These attributes include values mainly
defined by the ComponentProfile of the OMG RT-
Component (RTC) Specification. Although other ele-
ments also have attributes, they are not shown due to space
limitations.

The RT-Component (RTC) Document Profile, for de-
scribing specifications of components in detail, and the
RT-Component (RTC) Extended Profile package, for ex-
tending tools and applications, are also defined.

4.2. System Profile
The system profile, RTS Profile, is a model used to de-

scribe a system made up of RTCs and their connections

352 Journal of Robotics and Mechatronics Vol.23 No.3, 2011



Software Deployment Infrastructure for Component Based RT-Systems

class RTS Profiles

rts_profile component

execution_context dataport serviceport configuration_set

dataport_connector serviceport_connector configuration_data

target_port

target_component

0..*

0..*0..*0..*0..*

0..*

11

This elements describe connections between ports

A system consists of 0 or more components

An execution context

might have 0 or more

participant components
RTS profile has component’s 

configuration settings as 

system information

Fig. 3. RTS Profile class diagram. RTS Profile defines data structure for a system description.

based on the RT-Component (RTC) model [1] defined by
the OMG RT-Component (RTC) standard.

The RTS Profile is made up of two packages, the RTS
Basic Profile shown in Fig. 3 and the RTS Extended Pro-
file for describing additional information of the system.

The RTS Basic Profile includes basic meta
information of the RT system. The RTS Ba-
sic Profile includes, as shown in Fig. 3, execu-
tion context information such as component,
execution context, dataport connector,
serviceport connector and system configuration
information such as deployment information, connec-
tion information, and configuration information of the
components. It is all stored in an rts profile node.

4.3. Manager Service
We propose a program called the “RT-Component

(RTC) manager,” which resides in each target environ-
ment so as to provide lifecycle management of RTCs and
provide applications with information.

The RT-Component (RTC) manager is a service that
provides functions of management of the lifecycle of the
RT-Component (RTC) described above and information
acquisition. Operations are accessible to any program in
the network through the CORBA distributed object mid-
dleware interface. Operations are available to dynami-
cally instantiate and delete RTCs from applications.

On the basis of the requirements derived from the dis-
cussion described above, we define the following inter-
face (Fig. 4).

As main functions, 1) module load, unload and infor-
mation acquisition; 2) component instantiation, deletion
and information acquisition; 3) linking master and slave
managers. The master-slave mechanism is a function for
achieving a stable operation of the system and grouping
the RTCs.

� �
interface Manager
{

ReturnCode_t load_module(in string pathname,
in string initfunc);

ReturnCode_t unload_module(in string path);
: (syncopated)

RTObject create_component(in string mod_name);
ReturnCode_t delete_component(in string name);
RTCList get_components();
ComponentProfileList get_component_profiles();
: (syncopated)

boolean is_master();
ManagerList get_master_managers();
ReturnCode_t add_master(in Manager mgr);
ReturnCode_t remove_master(in Manager mgr);
ManagerList get_slave_managers();
ReturnCode_t add_slave(in Manager mgr);
ReturnCode_t remove_slave(in Manager mgr);

};

� �
Fig. 4. The RTC manager interface definition.

4.3.1. Master and Slave Managers

The simplest manager operation method is a single
manager constantly activated to provide a service, receive
commands from outside, launch and terminate the com-
ponents, and so on. Multiple RTCs can be launched and
terminated in one manager process to instantiate a system.

However, with this method, when just one unstable
RTC causes a memory access violation (a so-called Seg-
mentation Fault) or the like, the other RTCs, free from
problems, are forced to quit together. On the other hand,
since, when two or more RTCs are in a same process,
communication between them becomes a simple func-
tion call, further improvements in performance can be
expected by operating two or more closely cooperating
RTCs in a same process. Unlike components in [4], any
type and any number of OpenRTM-aist RTCs can be oper-

Journal of Robotics and Mechatronics Vol.23 No.3, 2011 353



Ando, N. et al.

Master 
Manager

Application
Program

Tool

Slave Manager

RTC RTC RTC

Factory

Slave Manager

RT
C

RTC

Factor
y

Factorycreate create

launch slave manager,
create RTC, etc.

Manager operations from remote nodes

Node

Fig. 5. The relation among master manager and slave managers.

ated in any process, and it is preferable for RTCs launched
by the manager to take advantage of those merits so as to
allow the operation of RTCs in any designated process.

For these reasons, the RT-Component (RTC) managers
are divided into two types, masters and slaves, as shown
in Fig. 5, which have the following functions.

The master manager accepts all the requirements from
outside to the manager, and, according to the commands,
launches slave managers and generates RTCs on any slave
manager. The slave manager, according to commands
from the master manager, launches RTCs and provides
information to the master manager.

4.3.2. Configuration Function
Although in the RT-Component (RTC) specification [1]

a configuration interface is defined for changing internal
parameters, we defined a setting method using an argu-
ment given to the create component() operation de-
scribed above as a method for setting component parame-
ters according to a system specification description when
launching the components.

This method uses keys and values specified after a de-
limiter, “?,” after the component ID in the following man-
ner:� �

ID?<key>=<value>&<key>=<value>&...
� �

Passing configuration parameters as the argu-
ment of the create component() operation
enables setting parameters before instantiation as
components. In addition, we introduced an option,
manager=<host name>:<port>, in order to desig-
nate which slave manager an RTC is launched in. This
option is interpreted in the master manager, and the
create component() operation is carried out on the
designated slave manager. When the slave manager does
not yet exist, the master manager launches it.

RTC basic profile input pane

Generated files

Component build view

Code generation/packaging button

Fig. 6. The RTC Builder, an RT-Component development
tool based on the component specification.

5. Implementation

As a tool to generate or use the RTC and RTS Pro-
files, described above, we have implemented the RT-
Component (RTC) Builder and RT System Editor tools.
They are implemented as Eclipse plug-ins to provide an
integrated development environment.

5.1. RT-Component (RTC) Builder
The RT-Component (RTC) Builder (RTCB) is a tool in

which a specification of an RTC is created so as to gener-
ate RTC Profile XML files and create RTC template code
for various languages, such as C++, Java, and Python.
Fig. 6 shows a screenshot of RTCB.

The specification of an RTC is entered in the central
editor fields. Entry items include basic meta-information,
data ports, service ports, configuration parameters, lan-
guage and environment settings, and information such as
documentation. These items are entered so that the tem-
plate code of the RTC can be generated.

After entering the specification, the “Generate” button
is clicked to generate the template code in the selected
language. If a development environment plug-in of the
selected language has been installed in Eclipse, the im-
plementation of the RTC logic can be continued on the
same screen.

5.2. RT System Editor
RT System Editor (RTSE) is a tool for developing RT

Systems. Fig. 7 shows a screenshot of the RTSE online
editor. RTSE has an offline editor, which reads RTC Pro-
files created in RTCB and designs the system offline, and
an online editor, which connects and controls RTCs in op-
eration and develops and verifies the system. The system

354 Journal of Robotics and Mechatronics Vol.23 No.3, 2011



Software Deployment Infrastructure for Component Based RT-Systems

Fig. 7. The RT System Editor, an RT-Component based
system development tool.

is built by arranging RTCs in the central editor screen, in
which ports are connected, parameters are set, and so on.
The tools can save, load, and reconstruct a created system
as an XML file using the RTS Profile.

5.3. RT-Component (RTC) Manager
In this section, we will discuss specific implementation

methods of the manager.

5.3.1. “Corbaloc” URL Scheme
In order to achieve the master-slave structure of man-

agers described above, an interface is necessary between
the master manager and the slave manager. In addition,
the manager should provide applications in the network
with a means of direct access without requiring a name
server.

For this, we utilize the corbaloc scheme of the Interop-
erable Naming Service (INS), which is a method to desig-
nate an object reference by a URL string in CORBA [14].

A CORBA object is usually provided with a function
to specify an object by an encoded character string called
an Interoperable Object Reference (IOR). However, since
an object is provided with a random “Object Key” every
time it is generated and the object is encoded in the IOR
together with the Object Key, it has a different IOR ev-
ery time it is generated. On the other hand, the corbaloc
scheme allows a CORBA object to have permanent access
with a readable URL in the following format:� �

corbaloc:iiop:<host name>:<port number> /<object id>
� �

Predetermining the port number and object ID using
corbaloc enables direct access to an object on any host
without going through an external service such as a name
server. In this article, we set the port number of the master

manager to “2810” and the object ID as “manager,” and
implemented the RTC Manager as a directly accessible
CORBA object via the URL:� �

corbaloc:iiop:localhost:2810/manager.
� �

5.3.2. Negotiation Between Master and Slave
With the corbaloc scheme, the slave manager can di-

rectly access the master manager without using an exter-
nal service such as a name service. After launching, the
slave manager searches the same host for the master man-
ager and registers itself to the master manager. The master
manager registers the slave manager in a slave manager
list that is managed by the master manager itself, and the
master and slave negotiation is complete.

From this point, the master manager can provide clients
with information on RTCs on all the slave managers
which are managed by the master manager itself through
a call to all slaves.

5.3.3. GUI Operation Tools
In OpenRTM-aist, RTSE, described above, is a GUI

tool for building and operating the RTCs and the RT Sys-
tem. In the Eclipse, a set of screens on which a series of
operations are performed is referred to as a perspective.
The perspective is made up of views and editors. As one
perspective, RTSE is made up of a name service view, a
system editor, and so on. We further added a manager
view for operating the RTC manager.

Figure 8 shows the newly-implemented manager view,
which allows operations for building the system, such as
loading modules, instantiating components, and connect-
ing the components, to be performed within one perspec-
tive.

5.3.4. CUI Operation Tool
We have implemented the “rtcshell” and “rtsshell”

command toolkits for performing various operations on
RTCs from the command line [15] (Table 2).

Connection, status change, modification of configura-
tion parameters, and so on can be performed on RTCs
and RTC managers as though they are files in a directory
structures we call the “RTC tree.” “rtmgr” is a command
for operating managers, which uses load, unload, create,
and delete of sub-commands to enable RTC modules to
be loaded and unloaded and RTCs to be instantiated and
deleted. In addition, the “rtsshell” commands use RTS
Profiles generated by RTSE or other tools to enable the
system to be re-built and the system to be launched and
stopped.

5.4. Evaluation
We will now show usefulness of the manager and the

tools by comparing the methods to launch remote compo-
nents. In UNIX-based operating systems, it is easy to log
in and launch commands through the secure shell (SSH)

Journal of Robotics and Mechatronics Vol.23 No.3, 2011 355



Ando, N. et al.

Manager control view

This view is now showing 
current loadable modules list
in the specified manager in the
naming view.

A manager in the naming
service view

Fig. 8. The manager control view in the RT System Editor.

Table 2. The available commands list of the “rtcshell” and
“rtshell.”

Command Description
rtcshell

rtact Activate a component.
rtcat List component information.
rtcon Connect two ports together.
rtconf Manipulate configuration parameters.
rtcwd Change the current RT tree directory.
rtdeact Deactivate a component.
rtdis Disconnect a connection.
rtfind Search the RTC tree for components.
rtls List RTCs of the RT tree.
rtmgr Control managers.
rtpwd Print the current RT tree directory.
rtreset Reset a component.

rtsshell
rtresurrect Reconstruct system from RTS Profile
rtstart Start a system
rtstop Stop a system
rtteardown Disconnect and shotdown a system
rtcryo Save a system to a RTS profile file

tool, and this is one of the easiest methods to launch re-
mote components. In fact in [4], the “roslaunch” com-
mand works as a wrapper for remote launch by SSH. We
then compared remote launch times with RTSE and the
rtmgr command, which were developed this time, with
those by SSH (Table 3).

For SSH, we compared two methods: a method to
launch components by entering a command after logging
in without a password by a public key (manual SSH) with
a method to give a launch command directly through SSH
for automatic launch (automatic SSH). Each value indi-
cates a time per one RTC when ten of them were launched.

Table 3. The component launch time comparison.

Method time(per comp.) [ms]
Manual SSH (10 RTCs, diff. proc.) 1832
RTSE (10 RTCs, same proc.) 1760
rtmgr (one RTC diff. proc.) 792
rtmgr (one RTC, same proc.) 312
Auto SSH (10 RTCs, diff proc.) 178
rtmgr (10 RTCs, diff proc.) 84
rtmgr (10 RTC, same proc.) 37

On the other hand, when the “rtmgr” command is used,
one command can launch multiple RTCs. We then com-
pared a case in which one command was repeated ten
times to launch RTCs (one RTC) with a case in which
one command launched ten RTCs (10 RTCs). In addition,
since “rtmgr” can designate each RTC to be launched in a
different process (diff. proc.) or to be launched in a same
process (same proc.), we also compared those cases.

Manual launch using SSH and RTSE takes 1.8 s per
one RTC, or about 18 s for launching ten RTCs. These are
originally designed for interactive use; we have presented
them for comparison.

Table 3 indicates that “rtmgr” is faster when launch-
ing two or more RTCs and SSH is faster when launching
only one RTC. It also indicates that the use of the simulta-
neous launch function of rtmgr can launch the RTCs sig-
nificantly faster than other cases. In addition, it shows
that, compared with the case in which they are launched
as separate processes, overhead of the process launch is
small (about 47 ms) when the RTCs are launched in the
same process.

When “rtmgr” and RTSE are used, the degree of free-
dom is high. For example, components can be deployed in
any process. However, in that case, each component can
only be launched as an individual process when launching
with SSH.

356 Journal of Robotics and Mechatronics Vol.23 No.3, 2011



Software Deployment Infrastructure for Component Based RT-Systems

Table 4. A comparison among existing methods and our methods.

Methods Separated Same CUI GUI Embed to
processes process operation operation applications

SSH manual YES NO YES NO –
SSH auto YES NO YES NO difficult
RTSE YES YES NO YES not difficult
rtmgr/rtctree YES YES YES NO easy

In addition, internal functions of “rtcshell” are imple-
mented in a Python module called “rtctree,” and those
functions are called from Python scripts to perform var-
ious operations to the components such as launching the
components.

While each of the methods has advantages and disad-
vantages, the use of “rtmgr” and “rtctree” allows the RTCs
to be easily built in an application and in general the RTCs
can be launched and operated at a high speed (Table 4).

6. Conclusions

In this article, we have discussed deployment function
necessary for an RT system with multiple nodes and mul-
tiple robot software components, and proposed and imple-
mented services and tools for component profiles, system
profiles, and deployment.

We have defined the RTC Profile to systematically de-
scribe component specifications, and shown that it can
be utilized for source code generation and static system
configuration. In addition, we have defined the RTS Pro-
file to describe specifications of RT systems, and imple-
mented the RT System Editor and “rtshell” tools, which
use RTS Profiles to describe and reconstruct systems. We
have shown that various tools can be implemented and
data can be easily exchanged between the tools based on
a common specification description.

We have also designed and implemented the RTC man-
ager tool, which can manage the lifecycle of RTCs. By
dividing the managers into master and slaves and making
them cooperate, we have achieved flexibility of compo-
nent deployment that allows both tight coupling and loose
coupling of the components and stability in operations.

In this paper, the implemented functions of the RTC
manager do not include cooperation with repositories and
download and install of executable files. In the future, we
will implement a more flexible, more useful deployment
tool by designing and implementing a service which au-
tomatically performs planning and installation using RTC
and RTS Profiles.

All the profile specifications defined in this article and
the implemented services and tools are disclosed in [3].

Acknowledgements
This study is partially subsidized in 2009 by NEDO Intelligent
Robot Technology Software Project (2007 to 2011).

References:
[1] Object Management Group, “Robotic Technology Component

Specification Version 1.0,” OMG specification, formal/2008-04-04,
2008.

[2] M. Aoki and H. Ando, “Modularity: the Nature of Emergent Orga-
nizational Architecture (Japanese),” Toyo-keizai Shinposha, 2002.

[3] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. K. Yoon, “RT-
Middleware: Distributed Component Middleware for RT (Robot
Technology),” 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS2005), pp. 3555-3560, 2005.

[4] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating
System,” ICRA Workshop on Open Source Software, 2009.

[5] H. Bruyninckx, “Open robot control software: the OROCOS
project. In: Robotics and Automation,” 2001 IEEE Int. Conf.
on Robotics and Automation (ICRA2001), Vol.3, pp. 2523-2528,
2001.

[6] E.-C. Shin, S.-K. Son, B.-W. Choi, B.-H. Hwang, and D.-H. Lee,
“Development of OPRoS Software Components,” The 6th Int. Conf.
on Ubiquitous Robots and Ambient Intelligence (URAI 2009),
pp. 810-812, 2009.

[7] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: Components for
Robotics,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS 2006), Workshop on Robotic Standardization, 2006.

[8] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte
Carlo Localization for Mobile Robots,” The Journal Artificial In-
telligence, Vol.128, No.1-2, 2000.

[9] G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot
Platform,” Int. J. of Advanced Robotics Systems, special issue on
Software Development and Integration in Robotics, Vol.3, No.1,
2006.

[10] “JSR-000088 J2EE(TM) Application Deployment Specification 1.0
Final Release,” 2002.

[11] OSGi Alliance, “OSGi Service Platform Release 4 Version 4.2 Core
Specification,” 2009.

[12] Object Management Group, “Deployment and Configuration of
Component-based Distributed Applications,” OMG specification,
formal/2006-04-02, 2006.

[13] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner,
A. v. d. Hoek, and A. L. Wolf, “A Characterization Framework for
Software Deployment Technologies,” Technical Report Department
of Computer Science, University of Colorado, Boulder, Colorado,
April 1998.

[14] Object Management Group, “Interoperable Naming Service,” OMG
specification, formal/00-11-01, 2000.

[15] G. Biggs, N. Ando, and T. Kotoku, “Run-time management of
component-based robot software from a command line,” 2010 Sec-
ond Int. Conf. on Simulation, Modeling and Programming for Au-
tonomous Robots (SIMPAR2010), pp. 192-203, 2010.

Journal of Robotics and Mechatronics Vol.23 No.3, 2011 357



Ando, N. et al.

Name:
Noriaki Ando

Affiliation:
Senior Research Scientist, Intelligent Systems
Research Institute, National Institute of Ad-
vanced Industrial Science and Technology

Address:
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Brief Biographical History:
2002 Received Ph.D. degree from the Department of Information and
Communication Engineering, The University of Tokyo
2003- Research Scientist, National Institute of Advance Industrial Science
and Technology (AIST)
2009- Senior Research Scientist, National Institute of Advanced Industrial
Science and Technology (AIST)
2010- Visiting Researcher, Technical University Munich
Main Works:
• “Networked Tele-micromanipulation Systems “Haptic Loupe”,” IEEE
Trans. on Industrial Electronics, Vol.51, No.6, pp. 1259-1271, Dec. 2004.
• “RTC-Lite: Lightweight RT-Component for Distributed Embedded
Systems,” SICE J. of Control, Measurement, and System Integration
(SICE JCMSI), Vol.2, No.6, pp. 328-333, Nov. 2009.
• OMG Robotic Technology Component (RTC) standard
(formal/08-04-04) and its implementation OpenRTM-aist
Membership in Academic Societies:
• The Japan Society of Mechanical Engineers (JSME)
• The Society of Instrument and Control Engineers (SICE)
• The Robotics Society of Japan (RSJ)

Name:
Shinji Kurihara

Affiliation:
System Engineer, Intelligent Systems Research
Institute, National Institute of Advanced Indus-
trial Science and Technology

Address:
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Brief Biographical History:
2003- Joined Systems Engineering Consultants Co., Ltd.
2009- System Engineer, National Institute of Advanced Industrial Science
and Technology (AIST)
Main Works:
• “New data port implementation in OpenRTM-aist-1.0,” JSME Conf. on
Robotics and Mechatronics 2010 (ROBOMEC2010), 2A1-G03, Jun. 2010.
(in Japanese)
• development of the OMG RTC standard compliant RT-Middleware
OpenRTM-aist-Python

Name:
Geoffrey Biggs

Affiliation:
Research Scientist, National Institute of Ad-
vanced Industrial Science and Technology

Address:
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Brief Biographical History:
2007 Received Ph.D. in Electrical Engineering, University of Auckland,
New Zealand
2007- Postdoctoral Fellow, National Institute of Advance Industrial
Science and Technology (AIST)
2011- Research Scientist, National Institute of Advanced Industrial
Science and Technology (AIST)
Main Works:
• G. Biggs and B. A. Macdonald, “A pragmatic approach to dimensional
analysis for mobile robotic programming,” Auton. Robots, Vol.25, No.4,
pp. 405-419, 2008.
• robot development tools, robot software architectures, standardization in
robotics
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE) Robotics
and Automation Society

Name:
Takeshi Sakamoto

Affiliation:
Senior Systemconsultant, Robot Business Pro-
motion Group, Technologic Arts Incorporated

Address:
Cosmos Hongo Bldg. 9F, 4-1-4 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
Brief Biographical History:
2004- Joined Technologic Arts Inc.
2011- Part-time Lecturer, Department of Engineering and Design,
Shibaura Institute of Technology
Main Works:
• “Model-based design of Intelligent Mobile Robot,” Proc. of Int.
workshop on Model Based Engineering for Robotics 2010 (RoSym’10),
2010.
• “Mathematical Framework for Localization Information Coordinate
Reference System for Robotics,” Proc. of Int. Workshop on Standards and
Common Platform for Robotics 2010 (SCPR 2010) , 2010.
• “Robotic Localization Service Standard for Ubiquitous Network
Robots,” Robotics 2010 Current and Future Challenges, Houssem
Abdellatif, 2010.
• modeling of a robot system, development of development tools
Membership in Academic Societies:
• The Robotics Society of Japan (RSJ)

358 Journal of Robotics and Mechatronics Vol.23 No.3, 2011



Software Deployment Infrastructure for Component Based RT-Systems

Name:
Hiroyuki Nakamoto

Affiliation:
Manager, Systems Engineering Consultants Co.,
Ltd.

Address:
4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097, Japan
Brief Biographical History:
1996- Systems Engineering Consultants Co., Ltd.
Main Works:
• “Smart home for security and low power consumption with common
network modules based on RT middleware,” The 5th Int. Conf. on
Advanced Mechatronics (ICAM2010), pp. 551-556, 2010.
• robot system, RT middleware
Membership in Academic Societies:
• The Robotics Society of Japan (RSJ)

Name:
Tetsuo Kotoku

Affiliation:
Group Leader, Intelligent Systems Research In-
stitute (ISRI), National Institute of Advanced In-
dustrial Science and Technology (AIST)

Address:
Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan
Brief Biographical History:
1988- Research Scientist, Mechanical Engineering Laboratory (MEL),
Ministry of International Trade and Industry (MITI)
1998-1999 Visiting Researcher, Northwestern University, USA
2001- Senior Research Scientist, Intelligent Systems Research Institute
(ISRI), National Institute of Advanced Industrial Science and Technology
(AIST)
2007- Research Group Leader, Intelligent Systems Research Institute
(ISRI), National Institute of Advanced Industrial Science and Technology
(AIST)
Main Works:
• virtual environments with force reflection, and their application to the
tele-manipulation systems
• network robotics, reusing and sharing of robot technology (RT), and
standardization of RT
Membership in Academic Societies:
• The Japan Society of Mechanical Engineers (JSME)
• The Society of Instrument and Control Engineers (SICE)
• The Robotics Society of Japan (RSJ)

Journal of Robotics and Mechatronics Vol.23 No.3, 2011 359


