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Abstract. Component-based software is a major recent design trend in
robotics. It brings many benefits to system design, implementation and
maintenance. The management of such systems often depends on graph-
ical tools. These tools are powerful and provide a rapid way to layout
component networks. However, they also typically require considerable
resources to run. This is not ideal in robotics, where low-resource envi-
ronments are common. We have created a set of command-line tools for
use with the OpenRTM-aist component-based robot middleware. The
tools follow the UNIX philosophy of simplicity and aggregation. These
tools allow whole component-based systems to be created, managed and
monitored from a command-line. They are ideal for use in environments
where a graphical interface is not available. By combining tools together,
more complex functionality can be easily created.

1 Introduction

Component-based software design and implementation is a current trend in soft-
ware engineering. Software is divided into individual components, each with a
well-defined interface that specifies what functionality that component provides.
Multiple software components are combined together into a complete software
system in much the same way as the well-defined hardware components of elec-
trical circuits are combined to create a complete hardware system [12].

Component-based practices bring many benefits to software design, imple-
mentation, maintenance and reuse, including known interfaces that act as “con-
tracts” between components, “separation of concerns” (each component only
deals with its individual problem), isolation testing, and rapid development of
new systems using existing commoditised software resources.

These benefits also apply to the design, implementation, maintenance and
reuse of robot software. For example, the componentisation of hardware drivers
and algorithms allows robot systems to be built from pre-existing, ideally off-
the-shelf, software components. As a result, component-based software is a ma-
jor trend in robotics, particularly service robotics. Recent examples include
OpenRTM-aist [1], ORCA [2], ROS [8] and OPRoS [11].

A key part of using component-based software is interacting with the com-
ponent network that makes up the software system, both when designing the
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system and when monitoring and maintaining the system in its running state.
There are a variety of methods available for this. Interaction may be via a spe-
cialised tool designed to monitor a specific network of components. Alternatively,
a generic tool for the component architecture upon which the software system
is built may be used. In some cases, no such tool may be available, with all
interaction taking place through configuration and log files.

The work in this paper presents a set of tools designed for managing systems
using the OpenRTM-aist component-based framework. These tools differ from
the usual approach in that they apply a file-system abstraction to the compo-
nents for interaction, they are command-line tools and they follow the UNIX
philosophy of being small and using aggregation to add power. Such a collec-
tion of simple tools gives great flexibility and ease of use to developers using
component-based robotics software, particularly when the interaction method
may be constrained by unique environmental factors.

The following section describes the framework that is the focus of this work.
Section 3 discusses the background for the work. Section 4 discusses the tools
themselves. Discussions and conclusions are given in Sections 5 and 6.

2 OpenRTM-aist

OpenRTM-aist [1] is a component-based architecture for intelligent systems,
known in Japan as “Robot Technology,” or “RT.” OpenRTM-aist implements
the Robot Technology Component (RTC) specification [9] from the Object Man-
agement Group (OMG), which defines a common introspection interface. Intro-
spection is an important part of OpenRTM-aist, providing the basis upon which
tools build to interact with and manage systems using the architecture.

The central concept in OpenRTM-aist is the RT Component, or RTC. Each
RTC has an internal state machine with known states. The component’s internal
health can be both monitored and controlled through the introspection interface.
In order for a component to begin executing, it must be activated, placing its
state machine in the Active state. Execution can be terminated by deactivating
the component, returning its state machine to the Inactive state. If an error
occurs in the component, it moves to the Error state, from where it must be
reset to move it back to the Inactive state.

OpenRTM-aist supports data-flow- and request-based communications, with
interaction between components occurring at “ports.” The component network
is formed by making connections between the ports of the components. CORBA
is used as the transport.

OpenRTM-aist can use manager daemons to load and manage components
dynamically on remote nodes.

OpenRTM-aist uses CORBA [6] to implement the introspection interface.
Components must register on a known name server (there can be more than
one known name server in use). Typically, components are organised on the
name server using naming contexts below the root context in order to provide
hierarchical categorisation.
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OpenRTM-aist is part of a larger project by Japan’s New Energy and Indus-
trial Technology Development Organisation (NEDO) for creating the elemental
technologies of advanced robotics. Alongside OpenRTM-aist, there are also sev-
eral tools for use with the architecture under development. These include RT-
SystemEditor, the main tool for creating and interacting with RT Systems, the
component networks created using OpenRTM-aist.

3 Interacting with component-based software systems

There are many approaches to constructing component-based systems from in-
dividual components. One is a fixed design of components with the connections
between them hard-coded into the source code. Another is the use of config-
uration files specifying the network of connections between components. This
method is used in, for example, ROS, where an XML-format file is used to de-
scribe the component network.

Graphical tools may be provided for working with the component-based soft-
ware architecture. These tools are designed to simplify the development process
to a drag-and-drop level, where new software systems can be constructed from
existing software components by dragging them into a system diagram and draw-
ing connections between them. An example of such a tool for a robot-oriented
component architecture is RTSystemEditor, shown in Figure 1.

Graphical tools work well for system developers. With RTSystemEditor, de-
velopers are able to easily experiment with new system layouts through drag-
and-drop interaction. A new system is created by dragging the desired compo-
nents from the naming service view, which shows known components, and then
drawing connections between their ports. An entirely new, complete system, fea-
turing two components and a single connection, can be created in seconds. It is
this speed benefit that has led to so much research in graphical tools over the
years, and RTSystemEditor is not alone in providing this functionality. Other
examples include EasyLab [5] and SmartSoft [10].

Unlike hard-coding and text-based configuration files, graphical tools may
be useful beyond the creation step. RTSystemEditor, for example, can be used
to manage a running RT System. Individual and groups of components can
be started, stopped and reset, configuration parameters of components can be
altered, links created and destroyed, and the health of each component moni-
tored. This is possible because of the extensive introspection interface offered by
OpenRTM-aist. The benefit to developers is the ability to modify the running
RT System and experiment with different component network layouts in actual
time. A developer can even use RTSystemEditor to monitor the state of the
robot’s software while it’s running.

Unfortunately, the use of a graphical tool brings with it certain requirements
that cannot always be met. GUIs introduce more difficulty than benefit in some
situations commonly found in robotics:
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Fig. 1. The RTSystemEditor tool used with OpenRTM-aist to construct component
networks.

– In low-resource environments, such as a robot’s internal computer, the use
of the graphical environment necessary to display the graphical tool, as well
as the tool itself, can use up valuable resources. A robot’s internal computer
already has enough processing to do dealing with sensor data and planning. It
often cannot handle the load of a graphical tool as well without compromising
the capability of the robot.

– In order to get around the resource limitations, running the graphical tool
from a remote computer may be possible. However, not all robot computers
feature a network connection, making this method of connection impossible
in those situations.

– Graphical tools cannot easily be scripted to perform repetitive tasks. Meth-
ods for scripting GUIs do exist, such as graphical tools with built in scripting
systems and languages for manipulating GUIS [13]. However, these methods
may not offer the flexibility that can be found in, for example, the command-
line shell and tools available on the average UNIX system.

Inspired by the difficulty of using RTSystemEditor on our outdoor robots,
where computing resources are tight and there is no network connectivity to
a remote computer, as well as the massive flexibility of command-line tools on
UNIX-based operating systems, we have experimented with alternative meth-
ods of creating and managing an OpenRTM-aist component network that do



5

not rely on a graphical interface. We aim to create a method that allows for
great flexibility in, as well as automation of, the management of the component
network.

We must consider two aspects of the tool design. The first is how to refer-
ence the objects of the system. A graphical environment allows selection from a
display; we must provide an approach that works in a text-based environment.
The second is the method of control: pre-scripted with a programming language,
or a more interactive approach, similar to what a graphical tool provides.

The following two sections describe the approach taken to each of these two
issues.

3.1 The pseudo-file system

The RTSystemEditor tool presents known RTCs and other objects of the system
in a tree structure. The top level of this tree is the root, and below that are known
name servers, on which OpenRTM-aist objects register. Below the name servers
are the objects themselves. They are typically sorted into naming contexts, which
function as directories on the name servers.

The file system metaphor, commonly stated as “everything is a file,” is a
fundamental part of the UNIX philosophy. It says that everything on the system
can be treated as a file. Inspired by this, we have used it to represent the same
tree structure displayed in RTSystemEditor. The tools described in this paper
present the user with a virtual file system. Files in the file system represent
OpenRTM-aist objects such as RTCs and managers. Directories represent name
servers and naming contexts. The user can address a component by providing
its absolute path in the virtual file system, or a relative path from their current
working directory.

3.2 Interacting with components

We could use a programming language to interact with the system. Creating a
software library to interact with the components would support this. We would
be able to program various interactions with the system objects. However, such
a library already exists in the form of the architecture itself. It provides an
API, defined in CORBA IDL, used to introspect the objects. Similar libraries
exist for most middleware systems. The omniORB CORBA implementation [7],
for example, has an extensive API that can be used to interact with CORBA
objects at a low level. omniORB’s API even already allows programmers to
address objects registered on naming services using the path addressing scheme
discussed in the previous section.

If such a library is already available, why doesn’t the programming approach
meet our needs? It doesn’t because we desire the same level of interaction granted
by graphical tools. Having to write a new program for everything we wish to do
with the system is both inflexible and infeasible - developers do not have that
much time.
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Fig. 2. The interaction between OpenRTM-aist and the various tools.

In order to achieve the flexibility desired, we need an interactive approach.
Drawing further inspiration from UNIX, we have created two sets of command-
line tools for manipulating the objects of an RT System. We have named these
“rtcshell,” for managing individual objects one at a time, and “rtsshell,” for
managing entire systems at once.

4 Shell utilities for OpenRTM-aist

The tools in both tool kits follow the UNIX philosophy of being small, doing
one thing, doing it well, and using aggregation to add power. Each individual
tool only performs one task, such as checking the life-cycle state of a component
or making a connection, but they can be combined together and with existing
UNIX commands to create more powerful tools.

The tool kits build on two libraries that were created to provide most of their
functionality:

rtctree Implements the virtual file system and is responsible for all interaction
with the OpenRTM-aist introspection interfaces.

rtsprofile Provides reading and writing of files in the RtsProfile format, an
XML and YAML specification for describing RT Systems.

The interaction between the tool kits, the libraries and OpenRTM-aist is
shown in Figure 2. All libraries and tools are implemented in Python.

4.1 rtctree

The rtctree library implements the virtual file system, which provides informa-
tion about and addressing of all known OpenRTM-aist objects. The file system’s
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ConsoleIn0.rtc ConsoleOut0.rtc

Motor0.rtc Controller0.rtc Sensor0.rtc

Config0.rtc
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Fig. 3. The general structure of the pseudo-file system used by the rtcshell utilities,
dubbed the RTC Tree. The root node is at the top of the file system tree. The blue
triangles are naming service nodes. Red ovals are naming contexts below a root context.
Green boxes are RT Components. The yellow hexagon is a manager. Below it are aliases
to the two RT Components it is managing.

structure is illustrated in Figure 3. All paths branch off from a single root node,
/. Below this root are all the known name servers. Name servers may have mul-
tiple naming contexts to which objects can register for organisational purposes.
Within the file system, these are treated as directories.

The files of the virtual file system are RTCs and managers. The tools in
rtcshell operate on these files. The files “contain” information about the object
they represent, such as state and available ports for RTCs. This information is
accessible using the various tools from rtcshell.

Manager objects are used to manage running component instances, so they
contain references to the components they are managing. To make these easy to
interact with, the virtual file system treats managers as directories containing
aliases to the RTCs.

Using a tree structure allows additional tree-structure operations to be per-
formed, such as iterating over the tree to perform an operation on every node
matching certain criteria.

4.2 rtcshell

The rtcshell tool kit contains a set of shell commands for interacting with indi-
vidual RTCs and managers. It uses the rtctree library to access the introspec-
tion interfaces of OpenRTM-aist objects. Each command in the tool kit has one
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specific function. These can be roughly divided into categories: navigating the
virtual file system, viewing “file” contents, and manipulating files.

Navigating the virtual file system Navigation around the virtual file system
is essential for making the tools usable. We cannot expect the user to supply a
full path to every command.

The virtual file system is not a part of the real file system1. rtcshell therefore
needs to provide its own commands for changing the virtual working directory.
It provides equivalent to standard commands such as cd and ls. These are listed
below.

rtcwd Changes the working directory to the given path, which may be absolute
or relative to the current working directory.

rtpwd Prints the current working directory.
rtls Lists the contents of a given path or the current working directory.
rtfind Searches the virtual file system for objects and directories matching given

search criteria. This command is implemented using the iteration function
provided by rtctree.

The current working directory is stored in an environment variable, RTCSH_CWD.
This variable is manipulated by rtcwd and used by the other commands of rtc-
shell when using paths.

Examples are shown in Listing 1.1. Lines 1 to 7 show using rtls. Like the
standard ls command, rtls has both short and long forms. The long form briefly
displays some useful information about components, such as their current state
and the number of connections present. It is useful for monitoring the overall
state of running components.

Listing 1.1. Examples of using the rtcshell tools to operate on the virtual system.
Some lines have been removed for brevity.

1 $ ./rtls

2 Clusterer0.rtc Hokuyo_AIST0.rtc

kenroke.host_cxt/

4 $ ./rtls -l

Inactive 2/0 1/0 1/0 0/0 Clusterer0.rtc

6 Inactive 4/0 0/0 3/0 1/0 Hokuyo_AIST0.rtc

- - - - - kenroke.host_cxt

8 $ rtcwd kenroke.host_cxt/

$ rtcat ConsoleIn0.rtc

10 ConsoleIn0.rtc Inactive

Category example

12 Description Console input component

Instance name ConsoleIn0

14 Parent

Type name ConsoleIn

1 We are investigating methods for making it a part of the real file system, similar to
the /sys virtual file system in Linux.
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16 Vendor Noriaki Ando , AIST

Version 1.0

18 +Execution Context 0

+DataOutPort: out

20 $ rtconf ConfigSample0.rtc set default int_param0 5

21 $ rtconf ConfigSample0.rtc set int_param1 3

22 $ rtconf ConfigSample0.rtc list -l

-default*

24 double_param0 0.11

double_param1 9.9

26 int_param0 5

int_param1 3

28 str_param0 foo

str_param1 bar

30 vector_param0 0.0 ,1.0 ,2.0 ,3.0 ,4.0

31 $ rtact SequenceInComponent0.rtc

32 $ rtls -l

Inactive 8/0 0/0 8/0 0/0 SequenceOutComponent0.rtc

34 Active 8/1 8/1 0/0 0/0 SequenceInComponent0.rtc

[...]

36 $ rtcon ConsoleIn0.rtc:out ConsoleOut0.rtc:in

37 $ rtcat ConsoleIn0.rtc -l

38 ConsoleIn0.rtc Inactive

[...]

40 -DataOutPort: out

dataport.data_type TimedLong

42 dataport.dataflow_type push

dataport.interface_type corba_cdr

44 dataport.subscription_type flush ,new ,periodic

port.port_type DataOutPort

46 +Connected to

/localhost/ConsoleOut0.rtc:in

Viewing “file” information The files of the virtual file system “contain”
information from the objects they represent, such as the state of an RTC or the
list of loaded modules for a manager. rtcshell provides several tools for viewing
this information.

rtcat This is the most basic command for viewing contents. It prints out the
information provided by an object’s introspection interface, showing informa-
tion such as an RTC’s current state, its available ports, and the connections
provided on those ports. An example is shown in Listing 1.1, lines 9 to 19.

rtconf Displays the configuration parameters of RTCs. Each RTC can contain
various parameters used by its internal behaviour. See Listing 1.1, lines 20
to 30 for an example.

rtprint This command displays the data being sent over a port. It is useful for
checking if an RTC is sending the information the user expects. It makes use
of Python’s ability to convert nearly any object to a string.
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Manipulating files The most important function of rtcshell is manipulating
the objects of the virtual file system, particularly for connecting ports and chang-
ing the state of RTCs. The following commands are used for this.

rtact Activates a component, causing it to begin executing. See Listing 1.1,
lines 31 to 35 for an example.

rtdeact Deactivates a component, halting its execution.
rtreset Resets a component, moving it back to the Inactive state after an error

has occurred.
rtcon Connects two ports together. Ports of a component are specified after a

colon at the end of a component’s path. See Listing 1.1, lines 36 to 47.
rtdis Removes connections.
rtinject Injects data into a port. This is useful to test a component’s response

to inputs without needing to implement another component to create test
data.

rtmgr Manipulates manager objects. Managers are daemons used to deploy
components. rtmgr can be used to control the deployment of RTCs loaded
from shared libraries.

4.3 rtsshell

rtcshell is only used for manipulating individual file system objects. It does not
provide any facilities for easily manipulating entire RT Systems with a single
command. rtsshell is a complimentary tool kit that provides this functionality.
It works with RtsProfile files using the rtsprofile library to describe complete
systems, and uses rtcshell to manipulate the individual RTCs and managers.

rtcryo Creates a new RtsProfile file from the currently-running RT System.
rtteardown Removes all connections in an RT System.
rtresurrect Uses an RtsProfile file to recreate an RT System from running

RTCs by restoring connections and configuration parameters.
rtstart Starts an RT System by shifting all RTCs to the Active state.
rtstop Stops an RT System by shifting all RTCs to the Inactive state.

All these commands are capable of checking if the necessary objects are
available in the virtual file system. They can also use a partially-ordered planner
to ensure that state change commands are executed in the correct order, as
specified by the developer when creating the RT System.

5 Discussion

Each tool performs one task only. However, while each tool is simplistic by itself,
the collection as a whole is both flexible and powerful. As is common for UNIX
tools, aggregation of the tools provides additional power.

For example, combining the standard UNIX watch command and rtls -l

gives a continuously-updating display of component state. A list of all output
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ports of a component can be obtained by combining rtcat and grep. The shell
script for command can be combined with rtfind and rtact to activate all
components matching a given name specification. The implementation of the
rtsshell tools relies on aggregating the rtcshell tools to perform their actions, such
as starting all components in the system using rtact. We do note that this usage
style leads to the RTC Tree being constructed over and over, placing additional
load on the introspection interfaces of components. This can be mitigated by
careful management of the rate at which tools are executed.

These tools are different from RTSystemEditor. Many of the capabilities are
the same, but each has its own advantages. rtcshell is not useful for visualis-
ing large component networks, something RTSystemEditor’s graphical interface
excels at. RTSystemEditor is very difficult to automate, while it is trivial to
automate the command-line tools using shell scripting.

There is little directly-comparable work in robotics. Some other architectures
have tools with some related capabilities. For example, the Task Browser compo-
nent from Orocos [3] allows navigation around a running network of components,
viewing the ports, properties and so on. This is more like an interactive com-
ponent for debugging other components than a tool for creating and managing
component-based systems.

ROS includes introspection of its communications channels, and provides
shell tools for viewing information about them. One such tool is rostopic, which
can show various information about a topic such as the data being transmitted
over it. However, these tools can only monitor and send data to topics. They
cannot manipulate the component network, such as creating new connections,
nor can they find any information about components themselves.

YARP[4] contains command line tools for tasks such as connecting ports
together and querying port locations (similar to the rtcon tool), through a central
server.

The strength of rtcshell and rtsshell is in quickly creating small systems
for experimentation, for managing both large and small RT Systems, and for
automation of common tasks. No other system currently matches all of their
functionality.

6 Conclusions

This paper has described a set of command-line tools for managing RT Com-
ponents and component networks for the OpenRTM-aist architecture. The tools
treat known components and other OpenRTM-aist objects as part of a file sys-
tem. They allow the user to easily inspect and manage components in a console.

This form of interaction is well suited to the low-resource environments that
are commonly found in robotics, where a resource-intensive graphical tool is not
feasible. They allow greater freedom for developers. The tools can be scripted
using standard shell scripting facilities, facilitating the automation of tasks.

We believe that such a set of command-line tools adds additional usability
to component-based software architectures. The UNIX philosophy of tools being
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small with power through aggregation has been proved over the years to lead to
a highly-flexible system. Its application to robotics is important if robots are to
be likewise flexible, maintainable and easy to develop.
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