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Abstract. Component-based software is a major recent design trend
in robotics. It brings many benefits to system design, implementation,
maintenance and architectural flexibility. While previous methods of
structuring software led to monolithic robot software incapable of easily
using multiple architectures, the component-based approach, combined
with some suitable software engineering decisions, opens new possibil-
ities for interaction amongst architectures. Rather than using a single
architecture for an entire robot system, we now have the opportunity to
use the best architecture for the job in each part of the robot without
inefficient wrapping or translation. For example, a real-time architecture
for actuator control and a planning-based architecture for intelligence.
In this paper, we use the example of a native ROS transport for the
OpenRTM-aist architecture to illustrate the benefits of allowing archi-
tectures to interact in this way.

1 Introduction

A component-based software system, built from the ground up using a component-
based middleware such as CORBA, will only have one method of communicating
between components. This has been the traditional approach to component-
based software since the concept was conceived. The system is designed around
the architecture to be used.

In robotics, it has recently become popular to create a component-based
framework, either with or without the support of an existing middleware. The
framework’s goal is to reduce the time for creating a new software system and
to foster greater re-use of software resources.

Unfortunately, software created using a framework is only re-usable within
that framework. This is not true re-use [2]. It is common for a robot developer
to find functional software they wish to use, only to discover it was written for
a different framework than the one chosen by the developer.

Fortunately, the component-based approach to software development lends
itself well to greater inter-operation between different frameworks. It is common
for a component-based framework to abstract away the details of the transporta-
tion of data from one component to another. For example, the OpenRTM-aist
framework [1] provides a one-way data flow port abstraction which, assuming
the same serialisation method is used, supports any method of moving the data
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between two ports. At a higher level, it also provides an abstraction for the basic
concept of a port, allowing transports with any semantics to be created.

We can take advantage of this abstraction to integrate support for other
frameworks directly in OpenRTM-aist. This paper describes the implementation
of support for the ROS framework’s transport [7]. The implementation provides
native support for communicating between OpenRTM-aist components and ROS
nodes. No wrappers or protocol translators are required, ensuring no loss in
efficiency for inter-operation between OpenRTM-aist and ROS.

The next section discusses previous methods of implementing inter-operation
between frameworks. Section 3 describes how ROS support was added to OpenRTM-
aist. Section 4 discusses the support, including what advantages it brings. Con-
clusions are given in Section 5.

2 Architecture interaction

The continued development of a range of robot frameworks, with their own
unique properties, has produced a continuing desire to use frameworks together.
While a robot software system will likely be mainly using one framework, it
may be desirable to use another at the same time in some parts of the software.
Reasons for this can include:

1. The other framework includes functional software that the authors of the
robot software system wish to use, without needing to rewrite or otherwise
modify that software.

2. The other framework is more suited to some part of the robot under devel-
opment. For example, the main framework may not support hard real-time,
while another framework does. Using the other framework in the real-time
control loops of the robot becomes desirable. We view this as important in
future robot development as various frameworks arise with differing capabil-
ities.

In practical experience, the first is more common. Researchers tend to develop
their functional software heavily integrated into their framework of choice. When
another researcher wishes to use it, they must choose either to fork the software
in order to use it directly, make their framework of choice interact with the
framework containing the desired functional software, or change the framework
used in the rest of the system. The third option is obviously the least desirable,
and may even be impossible. The first option requires a large time commitment,
making the second option the most desirable. This option saves development
time and is less likely to introduce new bugs into existing software.

Previous approaches to architecture interaction have included wrappers and
translators, which are very similar.

In the following sections, we use the term “client” to refer to the software
written by the robot developer that is executing in the primary framework.
This will typically be the body of a component. The term “primary framework”
indicates the framework primarily being used in the development of a robot,
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while “secondary framework” refers to another framework being utilised to gain
some benefit that it offers for a specific part of the robot, such as real-time
capability.

2.1 Wrappers

A wrapper is the most straight-forward approach to making one framework in-
teract with another. The goal of a wrapper is to “wrap” the desired behaviour of
the secondary framework in a component for the primary framework. It creates
the appearance of providing that wrapped behaviour natively in the primary
framework. A wrapper could also be called a mimic component. Illustrations of
this method are shown in Figures 1 and 2.

Using a wrapper to enable communication between two frameworks involves
treating the secondary framework as a software resource to be used by client
software of the primary framework. This client software forms the wrapper.
It is responsible for servicing requests from other components of the primary
framework. In order to do this, it communicates with the desired behaviour of
the secondary framework as with any other software or hardware resource. The
secondary framework is not a first-class entity of the complete software system.

A wrapper may also be more of a translator, attempting to mediate between
the two frameworks at a level closer to the protocol than at the software func-
tionality level.

The largest problem with using a wrapper is that it introduces inefficiencies
into the robot system. Even if the data types match exactly (a rare occurrence),
data must be read from one connection and written to another.

Wrappers are typically specific to the data type or behaviour of the secondary
framework that they are wrapping. This means that multiple wrappers are usu-
ally necessary to support all the possible behaviour offered by the secondary
framework - a somewhat daunting and unreasonable time sink for any robot de-
veloper. Maintenance is also difficult. Any changes to the secondary framework
require updating the corresponding wrappers. Practical experience has shown
that wrappers typically become out-of-date and unusable within a short period
of time. These challenges to robot developers make wrappers less than ideal in
robot development and restrict the free use of multiple frameworks.

Numerous wrappers have been created over the years. They are not typi-
cally afforded much fanfare. A set of examples can be found in the library of
components for the ORCA2 framework. There are several components present
that wrap interfaces of the Player framework. They provide services to other
ORCA2 components, the behaviour of which is defined by the Player interfaces
that they wrap. A specific example is the LaserScanner2dPlayerClient driver1.
This provides the behaviour of a two-dimensional laser scanner, with the actual

1 http://orca-robotics.sourceforge.net/group__hydro__driver_

_laserscanner2dplayerclient.html
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Fig. 1. Using a wrapper component is the most common approach to connecting two
architectures. A separate component in the primary framework uses the secondary
framework as though using any other software or hardware resource.
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Fig. 2. A translator is a variation of a wrapper component. However, it is not a direct
user of either framework, unlike a wrapper. It merely translates the protocols.

behaviour implemented on the other side of the divide between ORCA2 and
Player.

Another example of the wrapper approach is the MARIE project [5]. This
project was begun specifically with the goal of allowing the multiple robot soft-
ware frameworks that existed at the time to interact. It features a large collection
of wrappers for various robot software frameworks, including Player and CAR-
MEN.

2.2 Multiple transports

A “transport” in a component-based software system is the method of com-
munication between two separate components. The transport is responsible for
ensuring data is moved from a source to a destination. This may involve serialisa-
tion of the data and transmission across a network using an underlying network
protocol. Transports may provide one-way communication or a request-reply
form of communication, in which case the transport may also be responsible for
ensuring a reply of some kind is delivered to the requester.
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A framework is not limited to a single transport. Multiple transports are often
supported. The concept of multiple transports is not new. The Player framework
has featured both TCP and UDP transports since 2004 [4]. Supporting multiple
transports allows the best transport for a link between two components to be
chosen. In the case of Player, the reliable TCP transport can be used in parts
of the robot system where all messages must be delivered. The unreliable UDP
transport can be used when missing some messages will not degrade the robot’s
performance - gaining the performance improvement that UDP offers in those
situations.

The multiple transports concept has not yet been widely exploited for allow-
ing communication between frameworks. It does, however, offer many advantages
towards achieving this goal:

– Unlike a wrapper component, transport management code exists outside the
scope of the client code. The cognitive load on the developer for utilising the
alternative transport is reduced.

– No translation is necessary. The data from the secondary framework can be
utilised directly in the primary framework’s components.

– No extra software components existing solely to translate between frame-
works are necessary. The removal of an extra communication step and change
in protocol removes an inefficiency present in wrappers.

– In an ideal design, the transports can be swapped transparently to the client
code. This increases the re-usability of components while maintaining flexi-
bility to communicate with other frameworks. (We discuss what is necessary
to achieve this in Section 5, below.)

– Less maintenance overhead: changes in the API of the secondary framework
require changes to the primary framework’s use of the transport, but these
should not affect client code. The wrapper approach is effectively crippled
by changes in the secondary framework.

Figure 3 illustrates how a single framework can use multiple transports to
support communication with components running both the same framework and
other frameworks.

The next section describes the implementation of a ROS transport for the
OpenRTM-aist framework. The benefits this transport brings to both OpenRTM-
aist and ROS are discussed in Section 4

3 Native ROS transport for OpenRTM-aist

This section describes the addition of a native transport for the ROS framework
to the OpenRTM-aist framework.

3.1 OpenRTM-aist

OpenRTM-aist [1] is a component-based framework for intelligent systems. It
features a component model that governs the life-cycle of each component, man-
agers for controlling deployment of components, a powerful properties system



6

Fig. 3. Multiple transports supported within a framework allow components to directly
speak the language of the peer they are communicating with. This structure applies
just as well when only one framework with multiple transport types are involved.

for fine control over component configurations, and an in-depth introspection
system. The introspection system complies with the Robot Technology Compo-
nent standard from the Object Management Group [8], allowing OpenRTM-aist
to work with any introspection tool compliant with this standard, such as the
RTSystemEditor tool [9] used to manage RT Systems. The introspection system
provides both inspection and control.

OpenRTM-aist has two built-in transports, both CORBA-based. The first
is a basic request-reply transport. This effectively exposes a CORBA interface
implementation from one component for other components to use as clients. The
second transport is a one-way transport, called the data-flow transport. It uses
CORBA’s RPC mechanisms to effect a transfer of data from a provider to a
consumer. Most importantly for the purposes of this discussion, the data-flow
transport is point-to-point communication.

OpenRTM-aist relies on “ports” to support its transports. A port is defined
in the RTC standard as a communication point; no further detail is given as to
how that communication is carried out, making the introspection system igno-
rant to the transport details. (This does not stop the introspection from config-
uring transports, as the introspection interface can carry abstract properties to
a transport for configuration purposes). Within a component implementation,
a port is an object that provides a proxy for the transport connection to allow
reading and/or writing of data. The abstraction of the transport implementation
from the rest of the framework is what allows us to so easily implement native
transports for interacting with other frameworks.

OpenRTM-aist’s component model supports hard real-time control. A com-
ponent in OpenRTM-aist is known as an RT Component.
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3.2 ROS

ROS, the Robot Operating System, is a relatively new component-based frame-
work [7]. It is the opposite of OpenRTM-aist in that it provides no component
model or life-cycle, preferring instead to grant the developer as much freedom
in component structure as possible.

Like OpenRTM-aist, ROS has a request-reply transport and a one-way trans-
port. The request-reply transport exposes call-back functions in the cal lee to
callers.

The one-way transport differs significantly from OpenRTM-aist’s one-way
transport. Rather than being point-to-point, it is semantically channel-based
communication. Publishers place data into a channel, and any components sub-
scribed to that channel will receive it. The channel can be persistent: if a com-
ponent subscribes after the last data was written into the channel, it can still
retrieve that value. This is an important capability in robotics, where irregularly-
and infrequently-updating data is common. For example, a map provider.

ROS provides introspection for its communications, allowing the existing
channels to be inspected from introspection tools. ROS does not directly support
any form of real-time.

3.3 Native ROS transport

As the previous sections noted, OpenRTM-aist and ROS differ in a number of
ways. Most importantly from the point of view of OpenRTM-aist is that ROS
provides a persistent channel-based transport, a feature with wide benefits in
robotics. ROS also has a very large library of functional robot software that,
were it available to OpenRTM-aist, would be very useful.

From the perspective of ROS, the hard real-time capability of OpenRTM-
aist would be useful in low-level real-time control of robot hardware. Currently
a robot program that requires real-time must drop out of ROS to gain it.

We have implemented a new transport for OpenRTM-aist that allows RTCs
to speak ROS’s language. The transport can be used both to communicate with
ROS components and to communicate with other RT Components using the
channel-based communications.

As mentioned earlier, OpenRTM-aist uses ports to provide access to its trans-
ports. The ROS transport provides a set of new port types: channel publication,
channel subscription, service provision and service utilisation.

The output and input ports provide publisher and subscriber access, respec-
tively, to ROS channels. The request and service ports provide access to and
provision of ROS services.

These ports can be used directly in a component’s code. They are written to
and read from using the same API as that used for the existing data ports, in
the case of the input and output ports. Due to fundamental differences in the
way the OpenRTM-aist and ROS service ports operate, the service ports in the
ROS transport use an API similar to that used by ROS components.
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Fig. 4. The communication between processes involved in a one-way data flow and a
two-way request for the ROS transport port.

As shown in Figure 5, the ROS transport in OpenRTM-aist fits into the
model shown in Figure 3.

The transport itself is implemented directly in OpenRTM-aist, making it a
native transport. Unlike a wrapper, which requires that the client code of the
component manage the transport, all transport management is handled within
the architecture. In OpenRTM-aist, this means utilising parallel threads of con-
trol (illustrated in Figure 4).

For each port that can receive data or requests, a parallel thread is started
that manages the port. These are not complex tasks; typically it consists of
providing execution time to the internal ROS systems that manage the transport.
The details for each port type are given below. The actual implementation of
the transport is left to the ROS libraries; OpenRTM-aist merely utilises those
libraries. This means that any improvements made to ROS will indirectly benefit
OpenRTM-aist as well.

Publishing port The publishing report is very simple. It merely places the
given piece of data into the ROS channel via the standard ROS publication
functions. The ROS library takes care of serialisation and transportation from
that point.

Subscribing port As with the original OpenRTM-aist input port, a separate
variable provides access to the most recent piece of data received. The ROS
subscribing port uses a callback function, as is standard with ROS subscribers.
The callback is provided by the port; the user does not need to provide it them-
selves. The responsibility of the callback is to copy the most-recently-received
data into a buffer. When the port is “read” by the component, the next value in
this buffer is copied into the target variable. A separate thread is used to give
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Fig. 5. The ROS transport provided by OpenRTM-aist allows a single component
to communicate freely with both other OpenRTM-aist components, using the native
OpenRTM-aist CORBA-based transport, and ROS components, using ROS’s channel-
based transport. The ROS transport can even be used between OpenRTM-aist com-
ponents, if so desired.

execution time to ros::spin(), the ROS function responsible for calling callbacks
when data arrives. This allows data reception to be handled out-of-band from
the component execution.

Service port ROS services are callback-based. Each service in a ROS compo-
nent exposes a single callback. The ROS transport for OpenRTM-aist works in
the same way. The developer provides a callback functor object. The port uses
a parallel thread to execute the ROS functions that handle receiving service
requests, and ensures that the callback functor is called.

Request port The request port does not use a parallel thread. As with the
native OpenRTM-aist request port, requests are blocking. The implementation is
very simple. It calls the standard ROS function for calling a service on the ROS
transport object contained within the port, blocking until a reply is received.

4 Discussion

The use of a native transport to interact with another framework brings many
benefits over writing a component wrapper:

– A new wrapper must be written for each message type to be exported from
the secondary framework to the primary framework. The ROS transport
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avoids this by allowing components interested in data from the secondary
framework to access it directly. This is a more natural approach for devel-
opers.

– A wrapper is often only effective in one direction – both the ORCA2 and
MARIE wrappers are effective at bringing behaviour from the secondary
frameworks to the primary, but are difficult at best to use in the opposite
direction. This transport allows the benefits to pass both ways. For example,
ROS gains access to a framework it can use for hard real-time parts of the
robot, while OpenRTM-aist gains a persistent channel-based transport.

– A wrapper only allows us to gain the behaviour contained in components.
The transport approach means that we also gain the benefits of the secondary
framework’s transport itself. We are not limited to using this transport to
talk to the secondary framework. We can also use it between components of
the primary framework as an alternative to the existing transports.

– The transport is as efficient as working directly in the secondary framework.
No translation of data or reading-and-re-sending is required.

There are specific benefits both to OpenRTM-aist and to ROS of this par-
ticular transport.

– OpenRTM-aist gains a persistent channel-based transport. This has a variety
of applications in robotics.

– OpenRTM-aist gains access to the huge library of functional software pro-
vided by and for ROS.

– ROS gains access to components that can execute in hard real-time.

An interesting application of native transports for framework interaction is
in creating layered systems. A typical layered architecture features interaction
points between the layers of some kind. With native transports, it is possible
to utilise one architecture per layer, using the best architecture for the job. For
example, the low-level control layer could be implemented in OpenRTM-aist,
with its strong life-cycle control and hard real-time support, while a higher level
for planning could utilise ROS, with its greater degree of flexibility and large
library of perception and planning components. It is the author’s opinion that
this method of implementing layered systems has promise in bringing greater
flexibility to how such systems are implemented.

One thought that may occur is that it is tempting to design one component
to act as the gateway between the two frameworks, repeating the situation we
have with wrappers. This may be the case when the data types between the
two frameworks do not match. Figure 3 certainly seems to imply this approach.
However, it is important to remember that the transport can be used in any
component, and so the more likely scenario is that in which the appropriate
transport is used on a connection-by-connection basis. The ease of using either
transport facilitates this.

The specific implementation presented in this paper is not perfect. It has two
flaws that limit its usefulness – the lack of commonality in data type represen-
tation and incompatible introspection interfaces.
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OpenRTM-aist and ROS use different and incompatible serialisation schemes
in their transports. OpenRTM-aist uses CORBA CDR, with the OMG IDL
language for data description, while ROS uses a home-grown scheme based on
generated serialisation functions and its own IDL for data description. This
means that any data types that must be sent over both transports must be
specified twice, once in each IDL.

OpenRTM-aist and ROS also use different interfaces for introspection. While
a ROS component network is relatively static once running, in OpenRTM-aist
an introspection tool is necessary to set up the component network at run-time.
Because the OpenRTM-aist introspection tools are not aware of ROS nodes or
channels, it is not possible to use them to directly connect to ROS channels at
run-time. Instead, ROS channel connections must be fixed prior to run-time.
This is less than optimal, from the point of view of OpenRTM-aist.

This integrated approach to inter-operation is rapidly spreading. The YARP
framework [6] has recently gained experimental ROS protocol support, although
it is incomplete at the present time. Differing component models do not prevent
it being used; all that matters is that the data is available at each end of a
connection when necessary. The local framework is responsible for providing it
to components with the correct semantics after transport is complete.

4.1 Attaining the ideal

The two disadvantages mentioned in the previous section are not insurmount-
able. Creating the ideal situation requires flexible serialisation systems and com-
mon introspection interfaces.

Flexible serialisation is necessary to allow a transport to choose its seri-
alisation method. For example, if OpenRTM-aist could choose its serialisation
scheme, it would be able to transmit data types specified in ROS IDL or CORBA
IDL. This would remove the need to specify data types twice. ROS and ORO-
COS 2 [3] both feature flexible type systems that can handle any serialisation
method the developer chooses to use, while OpenRTM-aist is limited to just one.
This is a problem with OpenRTM-aist.

Standard introspection systems is a more wide-spread issue. OpenRTM-aist,
ROS and the aforementioned OROCOS 2 all feature introspection. They also
all implement it differently, with different capabilities. If the introspection of
transports were at least common, it would be easier to create a tool that could
manage the connections between components from multiple systems.

5 Conclusions

Previously, creating a wrapper was the most common approach to allowing in-
teraction between robot software frameworks for use in a single robot system.
This approach has several limitations. It requires considerable developer effort
to create and maintain a wrapper, it introduces inefficiencies into the system,
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and multiple wrappers are typically required to adapt all the desired messages
of the secondary framework to the primary framework.

A better approach is to separate the transport from the framework, and allow
multiple transports to be used. This can then be exploited by utilising transports
from other frameworks, and so allow a framework to speak the language of other
frameworks and communicate with them. This approach is more flexible than
wrappers, requires less effort, and is more efficient.

We have developed such a transport for OpenRTM-aist. It provides native
communication with the ROS framework, allowing components for either frame-
work to communicate seamlessly with components for the other. The new trans-
port brings the benefits of ROS’s channel-based communication to OpenRTM-
aist, and OpenRTM-aist’s hard real-time support to ROS. The two frameworks
can be utilised in the appropriate parts of a single robot system.
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