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Abstract. Component-based software is a major design trend in robot
software. It brings many benefits to system design, implementation and
maintenance. One step in using component-based methods in designing
the structure of a robot program is managing the components and the
connections between them over time, known as coordination. In this pa-
per we present a framework for coordinating component networks using
the OpenRTM-aist software architecture, implemented using the con-
current Erlang language. The framework provides a coordination system
that mimics the internal state-change notification system of OpenRTM-
aist. Rather than being a fixed- structure coordinator, it allows robot
developers to implement a coordinator matching the style of coordina-
tion they need. This paper shows that Erlang has potential in robotics.

1 Introduction

Component-based software design and implementation is a current trend in soft-
ware engineering. Software is divided into individual components, each with a
well-defined interface that specifies what functionality that component provides.
Multiple software components are combined together into a complete software
system [13]. Using this design methodology, robot developers can create com-
plete robot systems from off-the-shelf software components as easily as complete
electric circuits can be created from hardware components.

Component-based practices bring many benefits to software design, imple-
mentation, maintenance and reuse, including known interfaces that act as “con-
tracts” between components, “separation of concerns” (each component only
deals with its individual problem), isolation testing, and rapid development of
new systems using existing commoditised software resources.

These benefits also apply to the design, implementation, maintenance and
reuse of robot software. As a result, component-based software is a major trend
in robotics.

An issue that all robot developers faces is the coordination of behaviours, and
so in turn the coordination of the software. Coordination is important to allow
the robot’s software to adapt to changes in the robot’s state as it carries out its
various tasks. Before the recent rise of flexible component-based architectures,
architectures with fixed structure, often layered, were popular in robotics. In
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these, a higher layer manages the actions of a lower layer to provide coordination
according to some generated plan. Often, the plan itself is generated by an even
higher layer, although some architectures, such as CLARAty [7], intentionally
do not use this approach.

In this paper, we present a coordination framework for the OpenRTM-aist
component-based architecture. It is a framework rather than a complete coor-
dinator because it provides the facilities for programmers to create their own
coordination systems. Rather than a fixed coordination style, programmers are
free to use whichever style suits their needs. We use the concurrent Erlang lan-
guage to implement the framework in order to test its applicability in robotics.

The next section discusses coordination methods commonly used in robotics.
Section 3 describes OpenRTM-aist, the architecture for which the coordination
framework has been designed. The coordination framework itself is described in
section 4. Discussion is given in section 5, and conclusions in section 6.

2 Coordinating robot software

Coordination has a long history in robot software. It has always been necessary to
manage the actions of a robot in order to achieve complex goals. It is particularly
common to see coordination play a major role in layered architectures. Often,
a layered architecture will feature a low-level layer that consists of chunks of
functionality, and at a higher level some kind of coordination system controlling
the execution of these chunks to meet some goal.

Despite their strong coordination support, no layered architectures have man-
aged to become widely used.

On the other hand, recent years have seen the popularisation of more flexible
component-based software architectures for robotics. These architectures allow
designers to create component networks. Rather than being layered, the network
of components is effectively a single layer of individual programs communicating
by one or more methods of transporting data. Such an architecture style is very
heterogeneous and adaptable to the needs of the programmer.

Examples of these architectures include OpenRTM-aist [1], ORCA2 [3], ROS [9],
ERIC’S [4] and OPRoS [12]. In each case, systems built using the architecture
rely on networks of connected components with data flowing amongst them.
The behaviour of the robot is represented by what data ultimately arrives at the
components responsible for controlling actuators. The shaping of this data, and
so determining the robot’s current behaviour, is performed by the components
that make up the component network between sensor components and actua-
tor components. The reader may notice that this is similar to coordinating the
actions of a lower layer in layered architectures.

Coordination in a component-based system therefore requires changing either
the internal behaviour of the individual components, or changing part of or the
whole component network.

None of the architectures mentioned above currently provide an automatic
coordination method to alter the component network at run-time. Only two
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of them provide facilities for manually altering a running component network.
OpenRTM-aist and OPRoS, both at least partially based on the same software
specification, allow for “ports” (the points on components at which communica-
tion occurs) to be connected and disconnected by external tools at run time.

The lack of a coordinator in general component-based software is under-
standable. The component-based design paradigm was originally aimed at static
software systems, such as business software. A component-based system, once
in place, was not expected to change. This is generally the case for component-
based systems today. The need to dynamically alter a component network at
run-time arose as the component-based paradigm began to be applied to more
dynamic systems, such as factory automation and robotics.

Previous work in robotics has produced many coordinators aimed at task
management. Examples include Colbert[6] and TDL[11], both designed for spec-
ifying and controlling reactive components of a hybrid architecture. Another is
the Reactive Model-based Programming Language[14], which is a synchronous
system for coordination of embedded systems using a deductive reasoning engine.

3 OpenRTM-aist

OpenRTM-aist is a component-based architecture for intelligent systems, known
in Japan as “Robot Technology,” or “RT.” OpenRTM-aist implements the Robot
Technology Component (RTC) specification [10], which defines a common intro-
spection interface. Introspection is an important part of OpenRTM-aist, provid-
ing the basis upon which tools build to interact with and manage systems using
the architecture.

The central concept in OpenRTM-aist is the RT Component, or RTC. Each
RTC has an internal state machine with known states. The component’s health
can be both monitored through the introspection interface. Components begin
executing when they are activated, entering the active state. Execution is termi-
nated by deactivating the component, moving it to the inactive state. The state
machine can also enter the error state.

OpenRTM-aist supports data-flow- and request-based communications, with
interaction between components occurring at “ports.” The component network
is formed by making connections between the ports of the components.

OpenRTM-aist can use manager daemons to load and manage components
dynamically on remote nodes. This point is important for the dynamic manage-
ment of component networks in which components may come and go as needed.

OpenRTM-aist uses CORBA [5] to implement the introspection interface.
Components must register on a known name server (there can be more than
one known name server in use). Typically, components are organised on the
name server using naming contexts below the root context in order to provide
hierarchical categorisation.
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3.1 Managing RT Systems

As mentioned above, introspection interfaces are an important feature of RT
Systems. It is through these interfaces that components are monitored and man-
aged, connections are created and removed, and the RT System as a whole is
managed.

This introspection interface provides completely dynamic access to an RT
System at run-time. Changes, both into the interface and out of it, are reflected
immediately by the receiving end. This dynamic control over the component
network is what allows for external run-time coordination of the network.

OpenRTM-aist also features in its implementation a large number of internally-
accessible callback functions. These functions are used by the components them-
selves to react to changes in the network around them and in the component
itself.

For example, when a connection is made between components, a callback
is triggered in each component involved. The components can use this callback
for any purpose the component designer deems suitable. One example is having
the component respond to a new connection on an output port by activating a
part of its behaviour that produces data. Prior to a connection existing, that
part of the component can remain dormant, reducing resource consumption.
Another example is a callback triggered when data is received on a port, which
a component can use to perform out-of-band processing on data rather than
processing it within its behaviour loop.

These callbacks provide a considerably more reactive interface than the externally-
accessible introspection interface. We can use them to give a component some
intelligence about its behaviour based on its abstract view of the state of the
network around it. Unfortunately, they cannot be accessed externally to a com-
ponent. We are unable to use them for external coordination of the component
network. We have therefore created an external coordination framework that
mimics these callbacks.

4 Coordinating RT Components

A coordination framework has been implemented for OpenRTM-aist. It gives
developers the necessary functionality to support external, fine-grained reactive
and pro-active coordination of an RT System.

The coordination framework has been integrated into the “rtctree-erl” li-
brary, implemented in Erlang [2]. It consists of a set of user-definable callbacks.
The following section describes rtctree-erl, while the callbacks that allow coordi-
nation are described in Section 4.2. An example of using the framework is given
in Section 4.3.

4.1 rtctree-erl

This library provides the low-level framework into which the coordination call-
backs are integrated. Its purpose is to provide an API for the OpenRTM-aist
introspection interfaces in Erlang.
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rtctree-erl uses a tree structure to represent the component network and
related OpenRTM-aist objects, such as managers. An example of this structure
is shown in Figure 1. Below the root node are all the known name servers.
Name servers may have multiple naming contexts to which objects can register
for organisational purposes. Developers can use naming contexts to impose an
organisation on the running components.

Within the rtctree-erl library, each node in the tree is represented by a sep-
arate Erlang process. We take advantage of Erlang’s light-weight processes to
allow concurrent access to any part of the tree (a single Erlang VM can support
thousands of processes on an average desktop computer). Each node acts inde-
pendently of the others, communicating using Erlang’s message-passing commu-
nication mechanism (Erlang processes cannot share memory, in order to provide
robustness).

The processes communicate with OpenRTM-aist distributed objects using
the OpenRTM-aist CORBA introspection interface. The library uses Orber [8],
the Erlang CORBA implementation, to make the remote procedure calls.

Because Erlang is derived from functional programming languages, the only
way to maintain data is by passing it from function to function. Each node in the
RTC tree follows this pattern, maintaining a structure specific to its node type.
In keeping with Erlang conventions, clients of the library do not directly use this
data structure. Rather, they make remote calls to the process containing the data
structure, sending a message corresponding to the operation to be performed.
The calling process typically waits for the result, but it is possible to continue
execution and check for a result at a later time. This is a key feature of Erlang’s
method passing that increases the flexibility of its RPC. The rtctree-erl library
provides an API for each node type that hides the RPC code and provides what
appears to be a traditional function-based API to clients of the library.

RT Components only exist as leaves of the tree. The node representing a
component contains a cache of the component’s information, retrieved through
the introspection interfaces of OpenRTM-aist. This information can be updated
at any time by requesting an update of all or a part of the cache, which will
cause the node process to make a new remote procedure call and get the latest
value. It is not updated automatically by default (although see the next section
for an exception) as it does not change regularly; rtctree-erl assumes that the
developer knows best how often to update the information.

A component’s node may also contain child processes representing its ports,
execution contexts and configuration sets. These are represented using their own
processes to allow for concurrent access to ports as well as components. Like the
component nodes, port and execution context nodes cache information retrieved
through the introspection interfaces.

Using a tree structure allows additional tree-structure operations to be per-
formed, such as iterating over every node in the tree to perform an operation on
every node matching certain criteria.
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Fig. 1. An example of the tree structure used by the rtctree-erl library, dubbed the
RTC Tree. The root node is at the top of the tree. The blue triangles are naming
service nodes. Red ovals are naming contexts below a root context. Green boxes are
RT Components. The yellow hexagon is a manager. Below it are references to the two
RT Components it is managing.

4.2 External callbacks

The rtctree-erl library provides easy access to the introspection interfaces of
OpenRTM-aist, as though accessing an API on the objects directly. However,
writing coordination code with it is not so simple because the introspection inter-
faces do not provide a reactive interface. A coordinator would need to manually
check important conditions.

On the other hand, OpenRTM-aist provides a large set of internal callbacks
for components to used, a small sample of which is shown in Table 1. Having this
fine-grained information available externally would make implementing powerful
coordination systems easier.

We have implemented a set of external callbacks that use the introspection
interfaces to mimic the internal OpenRTM-aist callbacks. A sample of these
external callbacks is given in Table 1. Not all of the internal callbacks are im-
plemented externally; in some cases the information is not available externally
in any way. For example, information relating to data being received cannot be
detected externally.

The framework acts as an automated intermediary between coordinators and
the rtctree-erl library’s introspection APIs. The callbacks are triggered automat-
ically when appropriate. Developers can write their coordinators to be reactive
to the changing state of the robot software system.

The callbacks are implemented in the component node, port, execution con-
text and configuration set processes of the rtctree-erl library. The developer must
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Table 1. A sample of the callbacks available internally in OpenRTM-aist, and those
provided by rtctree-erl.

Internal callback External callback Purpose
(module:type)

onActivated, onDeactivated, component:state Notify of changes in a component’s
onError state.
onConnect port:connect Notify of a new connection on a port.
onDisconnect port:disconnect Notify of the removal of a connection

from a port.
OnUpdateParamCallback configuration: Notify of a configuration parameter

update param being updated.

implement callback functions and then register them in the process of interest,
indicating the piece of state information the callback is for. For example, a de-
veloper can write a function to handle a component entering the error state,
then register it with a component process as a callback for state changes.

The component and node processes monitor the state information relevant
to the callbacks that are currently active. When this state information changes,
the registered callback functions are called. (We term the process that triggered
the callback the “source process.”) Callbacks are passed:

– The relevant piece of new state information,
– What the value was before the change,
– The process identifier (PID) of the component or port process that triggered

the callback, and
– Any extra data relevant to the specific callback.

Callbacks are executed in a separate process from the source process. One
reason for this is to prevent callbacks from blocking the source process from
triggering other callbacks by taking too long to execute. However, the primary
reason is to prevent deadlocks: if the source process is executing the callback,
the callback cannot use the RPC-based API to manipulate the OpenRTM-aist
object that triggered the callback. Instead, the source spawns a worker process
to handle each callback it triggers. We take advantage of Erlang’s light-weight
processes and rapid process spawning here.

The next section uses an example to illustrate the use of the framework to
coordinate an event in a robot software system. Through the example, it gives
further details on how the framework functions.

4.3 Example: re-configuring a localisation system

In this example, we are coordinating the simple RT System shown in Figure 2, a
localisation system utilising a laser, gyro and odometry. Two localisation com-
ponents are available, with the laser-based component in use when the robot
starts. Only one is active at a time.
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We monitor the system for faults in the laser. When a fault occurs, we need
to switch from the laser-based localisation component to one based solely on the
gyro and odometry. We must shut down the laser-based localisation component,
create the odometry/gyro localisation component, form new connections, and
activate the new component. The code to do this is shown in Listing 1.1.

First the coordination program starts the framework (Line 6). Libraries in
Erlang are implemented as “applications,” providing an API for accessing their
functionality and operating concurrently to client programs. The coordination
program then registers the callbacks it is interested in (Lines 8 to 9). The co-
ordinator retrieves the node of interest from the RTC Tree using its path, then
registers its callback function with this node. It provides the callback function
object, the type of callback it is registering (a state-change callback, in this case),
and the rate at which to update the state from the remote object.

The coordinator is now fully-activated. The starting process is free to exit at
this point; the callback functions will be executed in their own processes.

The callback function is shown on lines 12 to 30. Note the rule-like pattern
matching ensuring that this callback only executes when the new state is the
error state, and the triggering component is the component of interest. It uses the
rtctree-erl library APIs to handle the event, replacing the failed laser node and
the now-unusable localisation component with a new localisation component.
Note particularly line 20, where a new component is instantiated dynamically.

Figure 3 provides a sequence diagram showing the flow of control amongst
the various processes involved in this example. Figure 2 shows the component
network over time during the example.

5 Discussion

The framework presented is designed to be flexible. The goal is to allow robot
developers to implement coordinators that meet their needs. The callback system
allows for continuous monitoring of any aspect of an RT System. Its speed is
limited by the response of the CORBA introspection interfaces.

This callback system provides flexibility to coordinator implementers. For
example, it is easy to register a callback that is called whenever the state of
a component changes. Sample code showing this is given in Listing 1.1, which
shows waiting for a component to go into the error state. Callbacks can also be
registered that are called when a new connection is created on a port, when a
manager creates a new component, and so on. Combining this framework with
direct usage of the rtctree-erl library provides control over the network being
monitored, such as re-arranging the component network when an error occurs
in a component.

Because the rtctree-erl library, the coordination framework and coordinators
are all implemented in the inherently-thread-safe Erlang programming language,
there are no concerns with using such a large number of processes. However, this
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Fig. 2. The changes in the component network of the example. (a) The components
operating as normal. (b) An error occurs in the laser component. (c) The connections
to the failed component are removed, a new localisation component is instantiated and
connected. (d) The new localisation component is activated.

is a framework, and so it is up to the programmer to ensure their coordinator
design will not lead to, for example, conflicting callbacks. While Erlang supports
soft real-time, it is up to the programmer to ensure their callbacks will not
execute for too long. The framework does not check if a callback is currently
running if the next tick causes it to be triggered again. Hard real-time is not
possible using Erlang, which may limit the applications of this system.

This coordination framework is more dynamic than previous methods. We
no longer need to have every component we may potentially use executing and
a part of the component network all the time. Instead, we can start and stop
components as necessary in response to changes in robot state. This preserves
system resources and simplifies the component network.

This framework compares favourably to the languages mentioned in Sec-
tion 2. Its primary benefit is that it uses an existing language rather than in-
venting a new one, simplifying the framework development and providing it
with the power of a complete language. Despite this, it still has a rule-like syn-
tax similar to custom-designed languages. In addition, both Colbert and TDL
are designed for specifying tasks as well as coordinating them. This framework
is purely for coordination of existing components. The difference with RMPL is
that this framework is not synchronous. While this limits its use at lower levels
for fine control, it is suitable for higher-level planning tasks.

The most important contribution of this work is showing that the Erlang
syntax is a benefit when writing coordinators. Erlang’s function declarations
use a pattern-matching system. This makes them look like rules. We benefit
from this in our coordinator framework. As the example shows, we can write
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Fig. 3. The processes involved in using a single callback coordinator. Note how the
processes appear and disappear as needed; when no events need management, the
coordinator itself requires no resources and rtctree-erl only requires enough to regularly
update the relevant status.

the function declaration of the callback functions as a set of rules. The callback
in the example is a rule for a component moving to the error state. We gain
this syntax benefit without needing to create or modify a language. Erlang has
relatively wide support in industry, and has been in use in industrial applications,
particularly telephony, for nearly 25 years [2].

6 Conclusions

Component-based software architectures are becoming popular in robotics. They
lead to more flexible robot software structures. Coordination of the component
networks to adapt to changing situations and changes in robot state is still a topic
of research. Many popular frameworks do not provide an externally-accessible
interface for the management of components and the connections between them,
making it difficult to create an external coordinator tool.

The OpenRTM-aist architecture features fully-dynamic connections and com-
ponents. It does not yet have a coordination tool, and its internal state-monitoring
callbacks are also more capable than its external introspection interfaces.

We have taken advantage of the introspection interfaces to create a coordi-
nation framework that provides the same fine-grained monitoring and control
as the internal monitoring callbacks. The framework is implemented on top of
the rtctree-erl library. It is implemented in Erlang, a concurrent programming
language. It uses features of Erlang to gain concurrency support and robustness.
The framework shows that Erlang has much to offer robotics in concurrency
support, robustness and error-handling, and in syntax.
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Listing 1.1. An example callback using the framework. The callback setup is just three
lines of code; adding additional callbacks would require one to two lines per callback at
most. The callback itself uses the rtctree-erl library’s API to manipulate the component
network in response to the laser node suffering a failure.

1 -module(example).

-export([run/0, cb/4]).

3 -include("rtctree -erl/include/nodes.hrl").

5 run() ->

ok = rtctree:start(),

7 ok = rtctree:add_servers(["localhost"]),

{ok , C} = rtctree:get_node_by_path(["/", "localhost",

"laser0.rtc"]),

9 component:add_cb(C, fun state_change /4, state , 1000).

10

11

state_change(’ERROR_STATE ’, _Old , C, _Extra) ->

13 % Disconnect and shut down the old localiser and laser

ok = component:reset(C, 1),

15 {ok , Loc} = rtctree:get_node_by_path(["/", "localhost",

"laser_localise0.rtc"]),

ok = component:disconnect_all(Loc),

17 ok = component:deactivate(Loc , 1),

% Instantiate the new localiser

19 {ok , M} = rtctree:get_node_by_path(["/", "localhost",

"manager.mgr"]),

ok = manager:create_comp(M, "odo_localise"),

21 % Connect the new localiser

rtctree:connect_by_path(["/", "localhost",

"odometry0.rtc", "odo"],

23 ["/", "localhost", "odo_localise0.rtc", "odo"]),

rtctree:connect_by_path(["/", "localhost", "gyro0.rtc",

"gyro"],

25 ["/", "localhost", "odo_localise0.rtc", "gyro"]),

% Activate the new localiser

27 {ok , OdoLoc} = rtctree:get_node_by_path(["/",

"localhost", "odo_localise0.rtc"]),

component:activate(OdoLoc , 1);

29 state_change(_, _, _, _) ->

ok.


