%I
%S 8,168,3474,62944,1038208,16735744,268269568,4294303744,68716822528,
%T 1099501010944,17592143577088,281474806841344,4503598947893248,
%U 72057591320018944,1152921493735211008,18446744030223007744
%N Equals one maps: number of n X 4 binary arrays indicating the locations of corresponding elements equal to exactly one of their horizontal, vertical and antidiagonal neighbors in a random 0..3 n X 4 array.
%C Column 4 of A221024.
%H R. H. Hardin, <a href="/A221022/b221022.txt">Table of n, a(n) for n = 1..55</a>
%F Empirical: a(n) = 20*a(n1) 64*a(n2) for n>5.
%F Conjectures from _Colin Barker_, Aug 03 2018: (Start)
%F G.f.: 2*x*(4 + 4*x + 313*x^2 + 2108*x^3 + 832*x^4) / ((1  4*x)*(1  16*x)).
%F a(n) = 16^n  81*2^(2*n3) for n>3.
%F (End)
%e Some solutions for n=3:
%e ..1..1..0..1....1..1..1..1....1..0..0..1....1..0..1..1....1..1..0..1
%e ..1..1..1..1....1..1..1..1....0..0..1..1....1..0..0..1....1..0..1..1
%e ..1..1..0..1....0..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1
%Y Cf. A221024.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 28 2012
