

RT-Component Object Model in RT-Middleware
– Distributed Component Middleware for RT (Robot Technology) –

Noriaki Ando, Takashi Suehiro, Kousei Kitagaki, Tetsuo Kotoku and Woo-Keun Yoon
Intelligent Systems Research Institute

National Institute of Advanced Industrial Science and Technology (AIST)
AIST Tsukuba Central 2,Tsukuba,Ibaraki 305-8568, Japan
{n-ando, t.suehiro, k.kitagaki, t.kotoku, wk.yoon}@aist.go.jp

Abstract— This paper proposes RT-Component object model in
RT-Middleware for robot system integration. “RT” means “Robot
Technology”, which is applied not only to industrial field but also
to nonindustrial field such as human daily life support systems.
RT-Middleware is a software infrastructure for RT systems. We
have studied modularization of RT elements at software level. For
that reason, RT-Middleware, which promotes application of RT in
various field, have been developed. Robotic system development
methodology and our RT-Middleware concepts will be discussed.
RT-Component, which is a basic software unit of RT-Middleware
based systemintegration, is derived from that discussion. Next,
the object model and the interface definition of RT-Component
architecture will be discussed. Finally conclusion and future work
will be described.

Index Terms—RT (Robot Technology), software component,
middleware, robot system, system integration

I. INTRODUCTION

Robotics research is making the transition from analysis to
synthesis and integration(Figure 1). We have already had a lot
of robotic basic functions enough to realize simple intelligent
tasks, which makes human daily life more convenient. The
research on the system integration of a basic robot function is
becoming important in robotics in recent years.

Robotic researches, that try to apply robotic functional
elements to full-scale application, are also active. Intelligent
environment and ubiquitous computing are typical example of
full-scale application for robotic system integration.

nature

analysis synthesis
integration

animal
insect

human being

scientific
principals

artifact

robot

RT based system

Fig. 1. The transition from analysis to synthesis. The research on the system
integration of a basic robot function is becoming important in robotics.

From such backgrounds, the necessity for the systematic
knowledge for robot system integration has increased. As

shown in a Figure 2, the methodology for robot system inte-
gration independent from persons’ experience and knowhow,
and robot system platform to support it is also needed.

Component

Complex robot systems

Component

Network

Function
Specification

Analysis
model

Design model

Real system
Experience, knowhow

Person dependent system design

Systematic design

Systematic
RT system integration

Implementation framework
Distributed object middleware

Modeling framework
Modeling pattern

Fig. 2. A Robot Systems Modeling Flow: The RT system should be modeled
and designed through systematic design flow independent from the persons’
experience and knowhow.

We started RT-Middleware project from 2002 under
NEDO’s (New Energy and Industrial Technology Develop-
ment Organization) “Robot challenge program”. Basic func-
tions for robot software platform, which supports complex
robot system integration, have been studied.

The purpose of this project is to establish basic technologies
for easily integrating robot systems having new functions by
modularized software components.

If robot systems with new functions can be constructed
more flexibly, every users’ needs, which cannot be satisfied
now, will be satisfied individually. Thus, it is expected that
the conventional robot industry mainly restricted to the manu-
facturing field will be expanded to the nonmanufacturing field
like support robots for daily life.

A. Related research

Research of software modularisation of robot functions and
development of software libraries for robot system integra-
tion are performed actively in recent years. ORiN (Open
Resource interface for the Network/Open Robot interface for
the Network) is a middleware, which offers the standard
communication interface over various FA (factory automation)
equipment including a robot [1], [2].

Orocos is the free software project that includes a set of
class libraries and application framework, and a hard realtime
kernel for all possible feedback control applications [3], [4].

ORCA (Open Robot Controller architecture) developed in
Toshiba is HORB (Java ORB developed in AIST) based robot
controller architecture [5], [6]. SONY is actively promoting
the OPEN-R which is the standard interface and platform for
the entertainment robot system [7].

On the other hand, one of our purpose is to define the stan-
dard software component interface that makes interconnection
possible among robots. Since the standard interface specifica-
tion is free and open, any vendors can implement middleware
based on this interface specification. To provide open-source
middleware based on those interface specifications is another
important purpose. Getting feedback from actual research use
and application use, it is expected that the improvement of
the interface specification will be advanced. Final target is to
establish a systematic robot system design theory derived from
the knowledge of component-oriented robot system integra-
tion. Thus, it is expected that the conventional robot industry
mainly restricted to the manufacturing field will be expanded
to the nonmanufacturing field like support robots for daily life.

B. Goals of RT-Middleware

The purpose of the RT-Middleware project is research
and development of the middleware which supports efficient
development of robot systems. The RT-Middleware aims at the
spread of an open robot system architecture, which contributes
to robot market activation.

Buisiness model of robot market: Until now, only some
makers with the synthetic technical capabilities of hardware
and software have participated in the robot market. When a
standardized robot system architecture spreads, a maker with
hardware technical capabilities can get into the robot market
as a robot device component vendor. The maker with software
technical capabilities can also get into the market as “a robot
system integrator”.

Wide application of RT: The RT-Middleware is a robot
system platform. The software platform is an infrastructure to
improve flexibility of robot system integration.

Robotics research tool: A researcher can be concentrated
on its subject of his/her research.

A highly modularized component can be used as a black
box. A researcher has only to develop his logic or algorithm as
a component, and can build a system by combining with other
available components. When a researcher want to try some
algorithms to specific part of the system, since a researcher has
only to replace a related module with new one implemented his
new algorithm, the efficiency of experiments will be improved.

Research on robot system integration: From academic
view, robotics research can be shifted to research of integration
technology by robot technology componentization. The knowl-
edge about the system integration, which have been missing
in robot system construction until now, can be stored.

For the above-mentioned purpose, we defined a set of
interface and its component model of distributed object mid-
dleware for RT functional element. Moreover, an open source
implementation named “OpenRTM-aist” has been developed
for the purpose of obtaining the feedback from many robot

<<PIM>
SDO model

<<mapping>>

<<PIM>>
RTM Specification

RTM for other platformsCurrent status of our project

Proposed in this paper

OpenRTM-aist implementation

realized

unrealized

Extended interface
for OpenRTM-aist

PSM (Platform Specific Model)
level specification

Implementation

PIM (Platform Independent Model)
level specification

Implementation by other vendors

<<use>>

<<implements>>

<<PSM>
RTM

CORBA model

<<PSM>>
RTM

EJB model

<<PSM>>
RTM

SOAP model

<<interface>>
OpenRTM

basic interface

OpenRTM-aist Other RTM

<<interface>>
OpenRTM

ext. interface

Future
standardization

Fig. 3. The RT-Middleware (RTM) standardization process and the relation
between RTM specification and our implementation of OpenRTM-aist.

research fields. Figure 3 shows the relation between RTM
specification and our “OpenRTM-aist” implementation.

In this paper, we mention about the RT-Middleware inter-
faces for the distributed object middleware, the RT-Component
object model and “OpenRTM-aist” as an implementation.
First, we will make a discussion about the basic function which
is needed in case an RT functional element is modularized.
The RT-Component object model derived from this discussion
will also be mentioned. To evaluate component based system
development, a force control manipulator system which is
implemented using OpenRTM-aist based on these ideas will
be shown. The result of the experiment will be reviewed and
future works will be described in the conclusion.

II. MODULARIZATION OF RT ELEMENTS

Only by simply implementing RT element as a distributed
object, a modularization of RT element is unrealizable.

In this section, structural differences in the modularization
of the simple distributed object and the RT functional ele-
ment are clarified, and the core architecture design of RT-
Component is discussed. We considered what kind of function
required for a modularization of the RT element would be
realized in the framework of distributed object middleware.
As one of the views of a modularization of RT element, “RT-
Component” was proposed. Required functions, a structure
and a realization method based on distributed objects for the
RT-component were also reviewed.

A. RT specific functions

Granularity of module: When modularizing a RT element,
a module of various granularity size can be considered. Mod-
ules of fine granularity level, such as a motor, a sensor, a
camera, and a controller. Modules of middle-fine granularity
level, such as a vision system with some image processing,
a several degrees of freedom manipulator arm and a mobile
robot with some sensors. Modules of rough granularity level,
such as a humanoid robot with legs, arms and vision system,
an intelligent room with distributed sensors and robots. It is
necessary to provide a framework which can choose such
various granularity freely in a RT middleware.

Active module: Usually, a general distributed object works
as a passive object, which sends back return values to a method
invocation. In this case, an object is modeled as interfaces
that contain operations with input and output parameters and
a return value. An internal activity model of an object is not
considered.

On the other hand, an RT element has its own tasks like real-
time feedback control. Furthermore, it is necessary to collect
required data RT-element itself, or to notify event to other
elements when it happened.

Rrealtimeness: Realtimeness of module activity is an
indispensable function in RT systems. RT-Middleware should
support realtimeness in its software module as a framework.

Realtimeness between modules: An RT system requires
the high speed communication and close cooperation with
other modules, such as a servo control.

Time management: For example, a servo control system
has to be performed under stable periodic real-time task. In
order to make two or more modules cooperate in the real-time
schedule, the time synchronization between modules, which
may be running on distributed host machines, is needed.

Software reuse: Users are unwilling to use a framework
which needs to remake all programs. In order to reuse a lot of
software library created until now, it is necessary to provide
the framework for modularizing the existing software library
easily.

Platform independent middleware: In order to improve
the reusability of software, the middleware has to be modeled
on the platform (in this context, ”platform” means operating
systems) independent abstraction level.

Network independent middleware: The RT-Middleware
has to support various communication media and its model
should have independent structure from them. If a real-time
communication media is available, modules that depend on
realtimeness should use it.

B. RT-Component model

For the above-mentioned reason, we chose CORBA as dis-
tributed object middleware, and tried modeling of RT module
on CORBA. We propose the RT-Component, as a RT module
unit model based on the distributed object model.

An RT-Component consists of the following objects and
interfaces.

• Component object.
• Activity.
• InPort as input port object.
• OutPort as output port object.
• Command interfaces.
The general distributed object model can be described as

some interfaces that contain operations with parameters and
a return value. On the other hand, the RT-Component model
has a component object as a main body, activity as a main
process unit, input ports (InPort) and output ports (OutPort)
as data stream ports.

III. RT-COMPONENT ARCHITECTURE

Figure 4 shows the architecture block diagram of the RT-
Component.

InPort 0 OutPort 0

CORBA object

Thread

OutPort n

command reply

reply

reply

reply

push

get

get

put

get, subscribe

RTComponent

InPort n

Activity

put

put

Fig. 4. The proposed architecture of the RT-Component. An RT-Component
has component object, command interface, activity, InPorts and OutPorts.

A. Activity and state transition

An RT-Component itself has an activity, which always con-
tinues processing something, and activity serves as a subject
of a device control, such as a robot.

B. RT-Component object model

RTComponent
Base class

Composite
RTComponent

Base class

Synchronous
Composite
Component

RTComponent ARTComponent B

Simple
RTComponent

Base class

Asynchronous
Composite
Component

Fig. 5. The RT-Component class hierarchy. User defined component class
inherits simple RT-Component base class. The composite component has RT-
Component itself by the composite pattern.

Figure 5 shows the hierarchy of RT-Component classes.
Simple RT-Component base class: In figure 5, the simple

RT-Component base class is the base class of each new RT-
Component class which is created by the component devel-
oper. A component developer can develop his/her component
class by inheriting from the RT-Component base class.

Composite RT-Component base class: On the RT-
Middleware, various granularity RT-Components will be pro-
vided by component developer. In this case, such a composite
structure or a nested structure are useful for hierarchical
robot system integration. To realize the composite structure,
the composite pattern is applied to the RT-Component object
structure.

The component states and state transition of the component
was defined so that various type of RT-Components could be
treated as common software parts. By giving a common state
transition to RT-Components, and specifying the meaning of
states, it is possible to control the action of many compo-
nents similarly. Various granularity components can be treated
similarly, by developing a component according to this state
definition. It becomes possible to realize the composite com-
ponent, which is nested components and grouped components,
by defining the common component state transition.

1) RT-Component state: The activity of RT-Component
has ten states: BORN, INITIALIZE, READY,
STARTING, ACTIVE, STOPPING, ABORTING,
ERROR, EXITING, FATALERROR, UNKNOWN. Figure 6
shows the state transition chart (UML state chart) of RT-
Component’s activity. According to the UML notation,
RT-Component’s method names which are invoked are
described in each state block.

The meaning of method prefixes is the following.
• entry: An atomic action performed on entry to the state.
• do: An action performed while being in the state.
• exit: An atomic action performed on exit from the state.
The states which have only a “entry” method are transient

states, which changes to the next state immediately. The states
which have “do” method are steady states, which can stay at
the state.

Active

entry/ rtc_active_entry

exit/rtc_active_exit
do/ rtc_active_do

rtc_reset

rt
c
_
k
il
l

rtc
_

s
to

p

end

success

Exiting

entry/
rtc_exiting_entry

success

Ready

start

FatalError

Unknown

Starting

entry/
rtc_starting_entry

Stopping

entry/
rtc_stopping_entry

Error

entry/ rtc_erro_enter
do/ rtc_error
exit/ rtc_error_exit

Initialize

entry/
rtc_init_entry

Born

rt
c

_
s

ta
rt

rtc
_
re

s
e
t

rtc_exit

error

error

error

rtc_exit

success

success

success

Aborting

entry/
rtc_aborting_entry

entry/ rtc_ready_entry

exit/rtc_ready_exit
do/ rtc_ready_do entry/ rtc_fatal_entry

do/ rtc_fatal_do
exit/ rtc_fatal_exit

Fig. 6. RT-Component statechart diagram.

A component developer has only to map his/her algorithm or
library into each RT-Components state, and should just insert
his/her code to the RT-Component framework.

C. InPort/OutPort

In the low level real-time control layer, if a component is
considered as the functional unit which consists of inputs,
processing, and outputs so that it may be exactly expressed
with a control block diagram, it will be easy to perform a
system configuration.

This input/output model is not so suitable for general usage
of the distributed object method invocation. Because the object
which sends its data to other objects has to know all objects’
complete interface definition. On the other hand, in such low
level control layer, data type, number of data and unit of data
are more important than interface definition. Therefore RT-
Component adopted the publisher/subscriber model [8], [9]
and defines it as InPort/OutPort.

The publisher/subscriber model supports an asynchronous
communication among many-to-many objects, in contrast to
the synchronous style of object method invocation. Published
information is forwarded eventually to all subscribers, either
immediately when being published (push) or on demand when
a subscriber asks for updates (pull).

� �
interface InPort
{

void put(in any data) raises(Disconnected);
readonly attribute PortProfile profile;

};

� �
Fig. 7. The InPort interface definition.

� �
interface OutPort
{

any get();
RtmRes subscribe(in InPort in_port,

out SubscriptionID id,
in SubscriberProfile profile);

RtmRes unsubscribe(in SubscriptionID id);
readonly attribute InPortList inports;
readonly attribute PortProfile profile;

};

� �
Fig. 8. The OutPort interface definition.

1) InPort object: The InPort object is a input port of RT-
Component. Figure 7 shows the interface definition (CORBA
IDL) of the InPort. An InPort receives data from OutPorts that
calls method of “InPort::put()”. This is basic function of the
InPort.

Other functional InPorts, that raise a signal or invoke a
callback method etc., can be implemented as subclasses of
the InPort.

2) OutPort object: The OutPort object is a output port
of RT-Component. The output port named OutPort interface
definition (CORBA IDL) is shown in Figrue 8. Data connec-
tion channel is created by the “OutPort::subscribe()” operation
with an InPort object’s reference, a subscription id (UUID)
and a profile of the subscriber. The OutPort sends data to
InPorts that “subscribes” this OutPort, calling “InPort::put()”
as “push” type data exchange. “pull” type data exchange
calling “OutPort::get()” method is also supported.

An unique ID, which is UUID (Universally Unique IDen-
tifier), is given to each subscription channel. Currently the
OutPort supports some subscription type, “Once”, “New”,
“Periodic”, “Periodic New”, “New Periodic”, “Triggered”,
“Triggered Priodic”, “Periodic Triggered” in OpenRTM-aist.
When subscription between an InPort and an OutPort is
created, one of these subscription types has to be assigned.

Figure 9 shows a sequence diagram of “New”, “Periodic”,
“Periodic New” and “New Periodic” subscription type.

For example, the ”New” subscription type means that an
OutPort send data to an InPort which subscribes it when new
data come from the activity. In the “Periodic” subscription
type, an OutPort pushes data from the activity to subscriber
InPorts in constant period ∆t. In the “Periodic New” sub-
scription type, an OutPort pushes data to InPorts in constant
period ∆t except when data were not updated. In the “New
Periodic” subscription type, an OutPort pushes data to InPorts
in constant period ∆t and its time base is arrival time of the

a
c
ti

v
it

y
A

a
c
ti

v
it

y
B

O
u

tP
o

rt

In
P

o
rt

:
:

a
c
ti

v
it

y
A

a
c
ti

v
it

y
B

O
u

tP
o

rt

In
P

o
rt

:
:

period

�t

a
c
ti

v
it

y
A

a
c
ti

v
it

y
B

O
u

tP
o

rt

In
P

o
rt

:
:

period

�t

a
c
ti

v
it

y
A

a
c
ti

v
it

y
B

O
u

tP
o

rt

In
P

o
rt

:
:

period

�t

New Periodic Periodic New New Periodic

Fig. 9. Subscription Types of OutPort.

first new data.
In these subscription types, the trigger event of sending

data to InPorts is the new data arrival. “Triggered”, “Triggered
Priodic”, “Periodic Triggered” are another subscription types.
In these subscription types, user can define the trigger event
sending data to InPorts.

put()
:

InPort

get()
subscribe()
unsubscribe()

:

0..* 0..*

OutPort

RTComponent

rtc_start()
rtc_stop()
rtc_reset()
rtc_exit()
rtc_kill()

:

Fig. 10. UML Object Diagram of RT-Component, InPort and OutPort.

As shown in UML object diagram of Figure 10, the re-
lation between an RT-Component object and Inport/OutPort
objects is a composition. An RT-Component object manages
object creation and destruction of InPorts and OutPorts. Other
object or software can ask the RT-Component what kind of
InPort/OutPort it has.

D. Composite component

The composite components are roughly divided into “an
asynchronous composite component” and “a synchronous
composite component”. The composite components have the
following features,

• A composite component can include components to man-
age them.

• Internal components’ InPorts/OutPorts are delegated to
the composite component.

• A composite component manages activity states of intert-
nal components.

Moreover, the synchronous composite component has the
following features,

• Activity states of internal components are completely
synchronized.

• Activities of internal components are performed serially
in preconfigured order.

• If a thread that invokes each internal component’s activity
is running in real-time mode, and the response time
boundary of method invocation is given and is finite,
internal components can be a real-time control task.

The basic asynchronous composite component has the fol-
lowing features,

• States of an internal components do not necessarily have
a synchronization.

• Activities of internal components are performed in par-
allel.

Some types of the asynchronous composite components are
possible by the state transition handling type between internal
components and the composite component.

IV. OUR IMPLEMENTATION AND A EXPERIMENT

A. OpenRTM-aist

“OpenRTM-aist” is prototype implementation based on RT-
Component interface definition and RT-Component object
model. “OpenRTM-aist” consists of a RT-Component devel-
opment frame work, a manager and some set of tools.

1) RT-Component frame work: RT-Component frame work
provides a managed state transition, InPort/OutPort manage-
ment and simplified development. A component developer
inherits the base class of RT-Component, and can create his
new component class. The state transition logic, which is
frozen spot, is implemented in the base class. A developer
can map process, which is hot spot, to be executed in each
state by the specific method override.

2) RT-Component manager: RT-Component manager man-
ages a life cycle of a RT-Component and provide access to
CORBA naming service. RT-Component can exist as a load-
able module. The loadable module is loaded by a component
manager and an instance of a RT-Component is created by the
manager. A manager also activates a component as a CORBA
object and binds it to a name server. Clients can obtain RT-
Component object references from the name server.

3) RT-Component template generator: OpenRTM-aist pro-
vides a template source code generator for RT-Component
development. The template generator can generate C++ and
Python source code from given component profiles and In-
Port/OutPort profiles. (Here, “template” does not mean C++
template metaprogramming.) C++ source code includes a
header file, component source, executable component source
code, Makefile and specification file of the RT-Component.
A standalone RT-Component executable and a loadable RT-
Component module are created from these files.

B. Experiment

We applied RT-Component to a force controlled manipu-
lator system for evaluation of RT-Component based system
development and its performance.

At first, the following RT-Components were developed.

• Force/torque sensor on endeffector (Nitta)
• Manipulator (Mitsubishi HI, PA10)

• Joystick using force/torque sensor (Nitta)
• Dumper controller

Figure 12 shows force/torque sensor on endeffector, manip-
ulator, joystick.

Joystick

End-effector
force/torque sensor

Manipulator

Fig. 11. Manipulator system equipment: End-effector force/torque sensor,
manipulator, joystick.

Each RT-Component is build as a standalone executable
component, and connected each other as shown in figure 12.

End-effector force sensor

Joystick

Manipulator

Controller
(Damping control)

Force/Torque
(TimedFloatSeq type)

End-effector velocity
(TimedFloatSeq type

Force/Torque
(TimedFloatSeq type)

Real-time loopReal-time loop

Real-time loop

Real-time loop

Fig. 12. A force controlled manipulator system using RT-Components.

Each component activity was executed as a 2 ms periodic
task in real-time. Component main process is independent
from each other, and is executed in parallel. All the com-
ponents were executed in a same PC (Pentium4, 2.8GHz) on
ARTLINUX. ARTLINUX is one of real-time Linux developed
at AIST (former ETL) in Japan.

In the experiment, when force was applied to end-effector
force/torque sensor, it was confirmed that an end-effector
position moves in the direction of force.

When force was applied to the joystick, it was confirmed
that the end-effector position of the manipulator moves simi-
larly. It was confirmed that force control is performed stably
in these case.

The point is that these three device components and one
control component are not a monolithic program but programs
completely created separately.

V. CONCLUSION

In this paper, we proposed RT-Middleware for robot sys-
tem integration. About the basic functions needed in case
RT functional element is modularized were discussed. RT-
Middleware interfaces for the distributed object middleware,
a component model and OpenRTM-aist as an implementation
were intdroduced.

Simple manipulator system was constructed using RT-
Components and the RT-Component usability was evaluated.
It was shown that the reusability of software and the flexibility
of integration can be improved if RT-Component is used.
Moreover, since it becomes possible to handle the existing
component as a black box and to combine it, a complicated
system can be constructed easily. In the experiment, it was
shown that each component can be executed in real-time. Since
each component was running asynchronously, however, the
force controled manipulator system is not real-time system in
a narrow sense. This problem will be solved by using real-time
synchronous composite component framework.

Robot specific features, for example coordinate system
handling, unit definition and conversion of data, etc.. are not
clearly mentioned in RTM specification and OpenRTM-aist
currently. However these features are indispensabe for RT-
Middleware. Some of them will be realized as services, and
others will be imported into the RTM specification.

ACKNOWLEDGEMENT

This work, supported by NEDO (New Energy and Industrial
Technology Development Organization), was performed in the
Joint Research Projects: “Development of Core Technology
needed for Creation of Robotic Fanctions” with Matsushita
Electric Works Ltd. and JARA (Japan Robot Association).

REFERENCES

[1] M.Mizukawa, H.Matsuka, T.Koyama, T.Inukai, A.Noda, H.Tezuka,
Y.Noguchi, N.Otera, “ORiN Open robot Interface for the Network – The
Standard Network Interface for Industrial robots and its Applications –”,
ISR2002, No.45

[2] Makoto Mizukawa, Hideo Matsuka’ Toshihiko Koyama, Toshihiro
Inukai, Akio Noda, Hirohisa Tezuka, Yasuhiko Noguchi, Nobuyuki
Otera, “ORiN: Open Robot Interface for the Network – The Standard
and Unified Network Interface for Industrial Robot Applications –”,
SICE Annual Conference 2002, pp.1160-1163, 2002

[3] Orocos: Open Robot Control Software. http://www.orocos.org
[4] C. Schlegel, R. Worz, “The Software Framework SmartSoft for Imple-

menting Sensorimotor Systems”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS ’99, pp.1610-1616, 1999

[5] Fumio OZAKI, ”Open Robot Controller Architecture (ORCA)”,
IROS2004 Workshop on Robot Middleware toward Standards, 2004

[6] Fumio OZAKI, “Open robot controller archtecture (ORCA)”, AIM2003
Workshop: Middleware Technology for Open Robot Architecture, 2003

[7] Kohtaro SABE, “Open-R : An Open Architecture for Robot Entertain-
ment” , AIM2003 Workshop: Middleware Technology for Open Robot
Architecture, 2003

[8] Ragunathan Rajkumar, Mike Gagliardi and Lui Sha, “The Real-
Time Publisher/Subscriber Inter-Process Communication Model for Dis-
tributed Real-Time Systems: Design and Implementation”, Proceedings
of the Real-Time Technology and Applications Symposium (RTAS’95),
pp.66-75, 1995

[9] J. Kaiser and M. Mock, “Implementing the Real-Time Pub-
lisher/Subscriber Model on the Controller Area Network (CAN)”,
Second IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp.172-181, 1999

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

