次世代ロボット知能化技術開発プロジェクト ロボット知能ソフトウェア再利用性向上技術の開発 来訪者受付システム

(RS003)

PA10 取扱説明書

1.0 版

2011 年 6 月 30 日 RTC 再利用技術研究センター

目次

1. はじめに	1
1.1. 目的	1
1.2. 本書での書式	1
1.3. 用語の定義、略語	1
1.4. 参考資料	1
2. システム概要	2
2.1. ハードウェア構成	2
3. 準備	6
3.1. 開発環境	6
3.2 開発環境構築	7
3.2.1 PA10 システム田制御 PC	7
32111 1 制御 PC へのモジュールの道λ	7
3.2.1.1.1. 前面10~00ビノユ 700等人	<i>1</i> Q
2.2.1.2. 2. OpenRTM-alst-1.0.0 RELEASE (C^{++}) Obuntu 10.04 of $\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$	00
3.2.1.3. 3. OpenRTM-alst-Python-1.0.0-RELEASE のインストール	9
3.2.1.4. 4. ECIIpse 関連 ツール のインストール	.10
3.2.1.5. 5. python visual $\mathcal{O}\mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}$.10
3.2.1.6. 6. PA10 システム制御 RIC および分解連動速度制御 RIC のコンバイル	.10
3.2.1.7. 7. Python スクリプト用環境設定ファイル修正	.10
3.2.1.8.8. 作業対象認識モジュールの導入	. 11
3.2.2. ビジョンシステム(ホルダ認識)用制御 PC	.12
3.2.2.1. 1. 制御 PC へのモジュールの導入	.12
3.2.2.2. 2. OpenRTM-aist-1.0.0 RELEASE (C++) Ubuntu 10.04 のインストール	.12
3.2.2.3. 3. python visual のインストール	.12
3.2.2.4.4. 作業対象認識モジュールの導入	.12
3.2.3. ロボットアーム・ハンド用制御 PC	.13
3.2.3.1.1. 制御 PC へのモジュールの導入	.13
3.2.3.2. 2. OpenRTM-aist-1.0.0-RELEASE (C++) Windows のインストール	14
3.2.3.3.3. 三菱重工業製 PA ライブラリ のインストール	14
3.2.3.4.4. コンテック社製 API 関数ライブラリ集 API-PAC(W32) のインストール	.14
3.2.3.5. 5. RTC のコンパイル	15
4. 使用方法	19
4 1 PA10 システム	19
4.1.1 PA10 システム記動	20
4.1.2 キャリブレーション	.20
4.1.3 PA10 サービス(給什)開始	.22
4.1.4 PA10 システム約了	.20
4.1.4.1 A TATO シスナムドリ	.20
4.1.5. FATO シスナム復旧	.20
4.2. モンユール単体採作	
4.2.1. PAIU 単体操作	
4.2.2. 作美対家認識 RIU 群単体探作	.30
4.2.3. RH/0/ 単体探作	.31
4.3. PA10 サービ人(給仕)ンミュレーンヨン	.31
5. トフフルシューティンク	.33
5.1.1. 作業対象認識率の低下	.33
6. その他	.33
6.1. 延期要求	Vo
6.2. その他の要件	.33
6.3. 特記事項	.33

1. はじめに

1.1. 目的

本書は、三菱重工業製汎用ロボット PA10、シュンク・ジャパン社製電動式平行ハンド RH707、および産業 技術総合研究所に提供して頂いた作業対象認識モジュールを用いたハンドアイシステム(以降、PA10 シス テムと略す)の取扱方を記載した文書である。

1.2. 本書での書式

本文書で使用している記号・書式の目的を下表に示す。

表.書式一覧

No.	記号·書式	目的
1	*	注意書き
2	赤色の文字	注記

1.3. 用語の定義、略語

表.用語の定義、略語一覧

No.	表記	意味
1	本システム	来訪者受付システム
2	ブロジェクト	次世代ロボット知能化技術開発ブロジェクト
3	センター	RTC再利用技術研究センター
4	現時点	本書作成時点(2010/10/01)
5	在籍者	センター内勤務者
6	OS	動作対象ブラットフォーム
7	RTミドルウェア	OpenRTM-Aist
8	RTM	RTミドルウェア
9	RTC	RTコンポーネント
10	RTS	RTシステム
11	OSS	オープンソースソフトウェア
12	障害物	人及び、人が一人で運ぶ事の出来る物体
13	RH	リファレンスハードウェア
14	PA10システム	PA10、RH707および作業対象物認識モジュール群を用いたハンドアイシステム

1.4. 参考資料

本書を作成するにあたり参照した文書・資料を下表に示す。

表.参考資料一覧

No.	文書名	備考 / URL
1	OpenRTM-aist Official Website	http://www.is.aist.go.jp/rt/OpenRTM-aist/
2	機能仕様書 PA10システム制御モジュール	
3	機能仕様書 RH707制御モジュール	
4	機能仕様書 PA1O制御モジュール	
5	機能仕様書	 RTC再利田技術研究センターHP→再利田検
5	分解運動速度制御モジュール	(10号が用反体のパピンター ・号が用使
6	機能仕様書「作業対象認識モジュール群」 (産総研)	証成不らば、 (RS003)詳細ページ→参考資料 http://dloif.15.11.04.16/DE002/DE002.html
7	作業対象認識モジュールドキュメント	nttp://210.154.164.10/RS003/RS003.ntmi
	(産総研)	
	作業対象認識モジュールドキュメント	
0	座標系変換ツール(産総研)	l ,

2. システム概要

2.1. ハードウェア構成

本システムのハードウェア構成について以下に記す。 図.ハードウェア構成図

本システムのハードウェア結線情報を以下に記す。

図.結線情報

番号	ケーブル名	接続元	接続先	備考
1	Ethernet	PA10システム制御用 PC	ロボットアーム・ハンド用制	
			御 PC	
2	ARCNET	ロボットアーム・ハンド用制御	サーボコントローラ	ケーブルは
		PC(運動制御ボード)		PA10 付属品
3	専用ケーブル	サーボコントローラ	ロボットアーム本体	
4	DigitalIO	ロボットアーム・ハンド用制御	ロボットハンドコントローラ	
		PC(ディジタル入出力ボード)		
6	専用ケーブル	ロボットハンドコントローラ	ロボットハンド本体	専用ケーブル
6	Ethernet	PA10システム制御用 PC	ビジョンシステム(RH)制御	
			用PC	
Ø	IEEE1394b	ビジョンシステム(RH)制御用	IEEE1394bハブ	9ピン-9ピン
		PC		
8	IEEE1394b	IEEE1394ハブ	IEEE1394bカメラ	9ピン-9ピン
9	IEEE1394b	PA10システム制御用 PC	IEEE1394bハブ	9ピン-9ピン
10	IEEE1394b	IEEE1394ハブ	IEEE1394bカメラ	9ピン-9ピン

図.RH700C3-PIO-32/32L(PCI)H 接続図

AC100V

本システムのハードウェア仕様について以下に記す。

【PA10 システム用制御 PC】 デスクトップ PC

メーカー	EPSON
製品名	Endeavor Pro4350
仕様	CPU: Core2 Duo E8500 3.16GHz
	ChipSet:Intel P35 + ICH9R
	Memory:PC2-6400 4GB
	GPU:NVIDIA GeForce GTX260
	HDD: ST3250310AS 250GB SATA 7200rpm
OS	Ubuntu 10.04

【ロボットアーム・ハンド用制御 PC】 デュクトップ PC

デスクトップ PC

メーカー	ライフロボティクス株式会社
製品名	RTコンポーネント開発用マシン
仕様	CPU: Core2 Duo E8400 3.00GHz
	Memory:PC2-6400 2GB
	GPU:
	HDD: HD251HJ 250GB
OS	Windows XP SP3

【ロボットアーム】 運動制御ボード

メーカー	三菱重工業株式会社
製品名	MHI-D7281
仕様	入力:PAライブラリによるコマンド発行(バス経由)
	出力:各軸の速度指令値(ARCNET経由)

サーボコントローラ

メーカー	三菱重工業株式会社
製品名	PA10-7C-CNT
仕様	関節数:7
	関節構成:ロボット取り付け面よりR-P-R-P-R-P-R
	(Rは回転関節,Pは旋回関節を示す)
	関節名称:ロボット取り付け面よりS1-S2-S3-E1-E2-W1-W2
	(Sは肩関節, Eは肘関節, Wは手首関節を表す)
	アーム長 肩リーヂ 317mm(ベース面~S2 間)
	上腕 450mm(S2~E1 軸間)
	下腕 480mm(E1~W1 軸間)
	手首リーヂ 80mm(W1~メカニカルインタフェース面間)

ロボットアーム本体

メーカー	三菱重工業様式会社
製品名	PA10-7C-ARM
仕様	

【ロボットハンド】 デジタル入出力ボード

メーカー	CONTEC
製品名	PIO-32/32L(PCI)H
仕様	

ロボットハンドコントローラ

メーカー	シュンク・ジャパン株式会社
製品名	RH700C3
仕様	

ロボットハンド本体

メーカー	シュンク・ジャパン株式会社
製品名	RH707
仕様	

【ビジョンシステム(ホルダ認識)用制御 PC】 デスクトップ PC

メーカー	日本HP			
製品名	HP Compaq Business Desktop dc7800			
仕様	CPU: Core2 Quad Q9550 2.83GHz			
	Memory:PC2-6400 4GB			
	GPU:GeForce 7300 SE			
	HDD: ST3250318AS 250GB 7200rpm			
OS	Ubuntu 10.04			

【カメラ】

IEEE1394b インターフェース

メーカー	Point Grey Research
製品名	DEVKIT-01-0002(Flea2開発キット)
仕様	

IEEE1394b ハブ(5Port)

メーカー	Point Grey Research
製品名	VP-FWB-HUB-5PORT-SET2
仕様	

IEEE1394b カメラ(×3)

メーカー	Point Grey Research
製品名	FL2-03S2M-C
仕様	

マシンビジョンレンズ(×3)

メーカー	FUJINON
製品名	DF6HA-1B
仕様	

3. 準備

3.1. 開発環境

1.PA10 システム用制御 PC

本 PC を用いて PA10 システムを統括的に制御する。 また、PA10 の分解運動速度制御や飲み物の認識も行う。 次節の手順に従い以下のソフトウェアをインストールする。

	OpenRTM-aist 1.0.0 (C++)
	OpenRTM-aist-Python 1.0.0
∖୲⇔୲⊬₊⇒	python visual
9 JMJ#7	Eclipse関連ツール
	OpenCV 2.0
	libdc1394-22
	PA10SystemController
RTC	ACT_PA10_RH
RTS	RMRC
スクリプト	作業対象物認識モジュール群
	各種制御スクリプト

2. ビジョンシステム(ホルダ認識)用制御 PC

本 PC を用いてリファレンスハードウェアのマーカ(ドリンクホルダ)を認識し、リファレンスハードウ ェアが飲み物を受け取る位置に到着しているか否かを判定する。 次節の手順に従い以下のソフトウェアをインストールする。

	OpenRTM-aist 1.0.0 (C++)	
	OpenRTM-aist-Python 1.0.0	
ソンドノエア	OpenCV 2.0	
	libdc1394-22	
RTS	作業対象物認識モジュール群	

3. ロボットアーム・ハンド用制御 PC

本 PC を用いて PA10 実機制御、RH707 ハンドの制御を行う。 次節の手順に従い以下のソフトウェアをインストールする。

	OpenRTM-aist 1.0.0 (C++)		
∖J→kP→→▽	三菱重工製PAライブラリ		
//////	コンテック社製 API関数ライブラリ集API-		
	PAC(W32)		
RTC	pa10vel		
KIC .	HandCtrl		

3.2. 開発環境構築

3.2.1. PA10 システム用制御 PC

本 PC の OS は、Ubuntu10.04 であるとし、以下の作業(1.-7.)を行い環境を構築する。

3.2.1.1.1. 制御 PC へのモジュールの導入

PA10 システムを構成するモジュールを下記 URL よりダウンロードする。 ダウンロードしたファイルには、以降にインストール手順を記載する OpenRTM に対するパッチフ ァイル等も含まれているため、必ず本作業を初めに行うこと。 統合検証~RS003~(ソースダウンロード)

- ソース(全部)
- PA10 関連

モジュール	格納フォルダ	導入先ハードウェア
PCforSystemControl.zip	~/	PA10 システム用制御 PC
PCforOpenVGR.zip	~/	ビジョンシステム(ホルダ認識)制御 PC
device.zip	C:¥	ロボットアーム・ハンド用制御 PC
patch	-	OpenRTM 用パッヂ
1.0.0_Windows バグ対応.zip	-	Windows 版 OpenRTM バグ対応ファイル
IDL_TypeDefinition	-	独自データ型定義 IDL ファイル

ファイルを解凍する。(ここでは~/にダウンロードしたものとする)

例)

「PA10 関連」をダウンロードした場合

unzip PA10.zip cp ./PA10/PCforSystemControl.zip ./ cp ./PA10/PCforOpenVGR.zip ./ unzip PCforSystemControl.zip unzip PA10/PCforOpenVGR.zip 3.2.1.2. 2. OpenRTM-aist-1.0.0 RELEASE (C++) Ubuntu 10.04 のインストール

C++言語で実装された RTC を実行するための RT ミドルウェアをインストールする。 本書では、まず一括インストールスクリプトを使用し OpenRTM-aist-1.0.0-RELEASE とその依存 パッケージの一括インストールを行う。その後バグ対応を行い(未対応であることを前提としている ため)、OpenRTM-aist-1.0.0-RELEASE を再インストールする。

·設定方法

1. 一括インストールスクリプトpkg_install100_ubuntu.shを下記より適当なディレクトリ(ここでは~/)にダウ ンロードし、実行する。 ※一任のパストールスクリプトで「コンパイラや OmniOPP4」なく、ストールナス

※一括インストールスクリプトで「コンパイラや OmniORB4」をインストールする。

pkg_install100_ubuntu.sh ダウンロード

\$su #sh pkg_install100_ubuntu.sh #exit

対応する問題

- InPort::read()でブロックされる問題 [openrtm-users 01308]参照
- Manager の shutdown に関連したバグ [openrtm-users 01149]参照
- ipv6 エントリのコメントアウト [openrtm-users 01270]参照
- 2. 下記よりソースファイルを(ここでは~/に)ダウンロードし展開する。 OpenRTM-aist-1.0.0-RELEASE.tar.gz ダウンロード

tar -xvzf OpenRTM-aist-1.0.0-RELEASE.tar.gz

3. 環境構築 1.で導入した「PA10/patch」フォルダ内にあるパッチファイルを~/OpenRTM-aist-1.0.0/src/lib/rtm 内にコピーする。

cp ~/PA10/patch/RingBuffer.h.diff ~/OpenRTM-aist-1.0.0/src/lib/rtm cp ~/PA10/patch/Manager.cpp.diff ~/OpenRTM-aist-1.0.0/src/lib/rtm

4. パッチを当てる。

cd OpenRTM-aist-1.0.0/src/lib/rtm patch < RingBuffer.h.diff patch < Manager.cpp.diff 5. make する。

~/OpenRTM-aist-1.0.0\$./configure --prefix=/usr

- ~/OpenRTM-aist-1.0.0\$make clean
- ~/OpenRTM-aist-1.0.0\$make
- ~/OpenRTM-aist-1.0.0\$sudo make install

6. /etc/hosts の localhost の ipv6 エントリをコメントアウトする。

::1 localhost ip6-localhost ip6-loopback

3.2.1.3. 3. OpenRTM-aist-Python-1.0.0-RELEASE のインストール

Python 言語で実装された RTC を実行するための RT ミドルウェアをインストールする。 Rtc_Handle を用いた RTC 操作が行えるよう、独自型データを Python 版 RTM モジュール群に 追加する。

·設定方法

1. パッケージインストール

ー括インストールスクリプト pkg_install_python_ubuntu.sh を下記から適当なディレクトリ(ここで は~/)にダウンロードし、実行する。

pkg_install_python_ubuntu.sh ダウンロード

su
sh pkg_install_python_ubuntu.sh

途中、いくつかの質問をたずねられるので、y あるいは Y を入力しながら完了させる。

 独自データ型を Python 版 RTM モジュール群に追加する。
 環境構築 1.で導入した「PA10/IDL_TypeDefinition」フォルダ内にある idl を /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL にコピーする。

> unzip ~/PA10/IDL_TypeDefinition.zip sudo cp ~/PA10/IDL_TypeDefinition/OpenVGR.idl /usr/lib/python2.6/distpackages/OpenRTM_aist/RTM_IDL sudo cp ~/PA10/IDL_TypeDefinition/ManipulatorCommonInterface_CommonData.idl /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL sudo cp ~/PA10/IDL_TypeDefinition/ManipulatorCommonInterface_DataTypes.idl /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL sudo cp ~/PA10/IDL_TypeDefinition/ManipulatorCommonInterface_MiddleLevelData.idl /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL sudo cp ~/PA10/IDL_TypeDefinition/RMRCData.idl /usr/lib/python2.6/distpackages/OpenRTM_aist/RTM_IDL sudo cp ~/PA10/IDL_TypeDefinition/RMRCData.idl /usr/lib/python2.6/distpackages/OpenRTM_aist/RTM_IDL

3. IDL コンパイルをしなおす

cd /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL\$sudo sh omniidl_clean.sh /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL\$sudo omniidl -bpython -I /usr/lib/python2.6/dist-packages/OpenRTM_aist/RTM_IDL *.idl

3.2.1.4. 4. Eclipse 関連ツール のインストール

RTC を接続したり、状態を監視するためのツール RTSystemEditor をインストールする。 RTSystemEditor は Eclipse のプラグインとして提供されるものであるため Eclipse もインストール する必要がある。以下の URL から RTSystemEditor をプラグインした Eclipse (Linux 用全部入 り)をダウンロードしインストールする。

全部入りパッケージ また上記参照先に記載されている Eclipse 動作不具合への対応も必ず行う。

3.2.1.5. 5. python visual のインストール

- シミュレータ環境として、python visual をインストールする。 1. Synaptic マネージャを起動する。 「システム」→「システム管理」→「Synaptic パッケージ・マネージャ」と選択する。
 - 2. python visual をインストールする。 「python visual」で検索し、チェックを入れ、適用する。
 - 3.「libgtkglext」で検索し、libgtkglext1とlibgtkglext1-devにチェックを入れ、適用する。
- 3.2.1.6. 6. PA10 システム制御 RTC および分解運動速度制御 RTC のコンパイル

すでに 1.で導入した RTC のバイナリファイルは、/PCforSystemControl/bin/comp 内に同封済み であるが、これらのコンパイルは以下の様にしてできる。

PA10SystemController

cd ~/PCforSystemControl/src/GeneralController/PA10SystemController ~/PCforSystemControl/src/GeneralController/PA10SystemController\$make -f Makefile.PA10SystemController ~/PCforSystemControl/src/GeneralController/PA10SystemController\$make -f Makefile.PA10SystemController install

• ACT_PA10_RH、RMRC、vel_7dof、pa10disp、pa10hand_disp、slider

cd ~/PCforSystemControl/src/MotionController ~/PCforSystemControl/src/MotionController\$./makeall.sh

3.2.1.7. 7. Python スクリプト用環境設定ファイル修正

~/PCforSystemControl/etc/set_env.pyにあるネームサーバーを適宜修正する。

```
#!/usr/bin/env python
# -*- Python -*-import subprocess
#
import os,pwd
UserName = pwd.getpwuid(os.getuid())[0]
LibDir="/home/"+UserName+"/PCforSystemControl/lib"
SrcDir="/home/"+UserName+"/PCforSystemControl/src/MotionController"
EtcDir="/home/"+UserName+"/PCforSystemControl/etc"
IcldDir="/home/"+UserName+"/PCforSystemControl/include"
LogDir="/home/"+UserName+"/PCforSystemControl/log"
BinDir="/home/"+UserName+"/PCforSystemControl/bin"
:
#Nameserver
RMRC NS
            = "localhost:9876"
DEVICE NS = "0000:9876"
DRINK NS = "localhost:5005"
           = "0000:9876"
RH NS
PACT NS = "localhost:2809"
           = "000:2809"
CT_NS
ooooに使用する PC の IP アドレスを記述する
```

- 3.2.1.8.8. 作業対象認識モジュールの導入
 - ●参考資料 7、8 に記載された手順に従って、作業対象認識モジュールを導入する。 参考資料 7 ではモジュール実行の際に rtshell を使用しているため、そのインストールに関する 記述があるが、本システムでは rtc_handle によるモジュール操作を行うため rtshell を導入す る必要はない。
 - モジュール導入後、以下の RTC のコンフィギュレーション設定をする

cd PCforOpenVGR/rtc_conf PCforOpenVGR/rtc_conf\$ cp *.conf ~/opt/OpenVGR/build

MultiCamera

OpenVGR/example/script/MultiCameraParam.conf に適切な camera_calib.yaml、 ieee1394board.0 へのパスを記述する。

へのハスを記述する

例)

conf.default.camera_calib_file: your_directory/camera_calib.yaml conf.default.camera_setting_file: your_directory/ieee1394board.0

Recognition

OpenVGR/example/script/RecognitionParam.conf に適切な ModelList.txt へのパスを記述する。

例)

conf.default.camera_calib_file: your_directory/camera_calib.yaml conf.default.camera_setting_file: your_directory/ieee1394board.0

RecognitionResultView

OpenVGR/example/script/RecognitionResultViewParam.conf に適切な ModelList.txt、 認識パラメータファイル**へのパスを記述する**。

例)

conf.default.RecogModelListPath: your_directory/ModelList.txt conf.default.RecogParameterFilePath: build/param/w02.txt

3.2.2. ビジョンシステム(ホルダ認識)用制御 PC

本 PC の OS は、Ubuntu10.04 であるとし、以下の作業(1.-3.)を行い環境を構築する。

3.2.2.1.1. 制御 PC へのモジュールの導入

PA10 システムを構成するモジュールを下記 URL よりダウンロードする。 ダウンロードしたファイルには、以降にインストール手順を記載する OpenRTM に対するパッチフ ァイル等も含まれているため、 必ず本作業を初めに行うこと。 統合検証~RS003~(ソースダウンロード) ● ソース(全部)

● PA10 関連

モジュール	格納フォルダ	導入先ハードウェア
PCforSystemControl.zip	~/	PA10 システム用制御 PC
PCforOpenVGR.zip	~/	ビジョンシステム(ホルダ認識)制御 PC
device.zip	C:¥	ロボットアーム・ハンド用制御 PC
patch	-	OpenRTM 用パッヂ
1.0.0_Windows バグ対応.zip	-	Windows 版 OpenRTM バグ対応ファイル
IDL_TypeDefinition	-	独自データ型定義 IDL ファイル

ファイルを解凍する。(ここでは~/にダウンロードしたものとする)

例)

「PA10 関連」をダウンロードした場合

unzip PA10.zip cp ./PA10/PCforOpenVGR.zip ./ unzip PCforOpenVGR

3.2.2.2. 2. OpenRTM-aist-1.0.0 RELEASE (C++) Ubuntu 10.04 のインストール

PA10 システム用制御 PC のときと同様に行う。

3.2.2.3. 3. python visual のインストール

PA10 システム用制御 PC のときと同様に行う。

3.2.2.4.4. 作業対象認識モジュールの導入

PA10 システム用制御 PC のときと同様に行う。

3.2.3. ロボットアーム・ハンド用制御 PC

本 PC の OS は、Windows XP であるとし、以下の作業(1.-5.)を行い環境を構築する。

3.2.3.1.1. 制御 PC へのモジュールの導入

PA10 システムを構成するモジュールを下記 URL よりダウンロードする。 ダウンロードしたファイルには、以降にインストール手順を記載する OpenRTM に対するパッチフ ァイル等も含まれているため、 必ず本作業を初めに行うこと。 統合検証~RS003~(ソースダウンロード) ● ソース(全部)

● PA10 関連

モジュール	格納フォルダ	導入先ハードウェア
PCforSystemControl.zip	~/	PA10 システム用制御 PC
PCforOpenVGR.zip	~/	ビジョンシステム(ホルダ認識)制御 PC
device.zip	C:¥	ロボットアーム・ハンド用制御 PC
patch	-	OpenRTM 用パッヂ
1.0.0_Windows バグ対応.zip	-	Windows 版 OpenRTM バグ対応ファイル
IDL_TypeDefinition	-	独自データ型定義 IDL ファイル

ファイルをデスクトップに解凍する。(zip ファイル解凍環境は各自用意するものとする。)

例)

「PA10 関連」をダウンロードした場合 「PA10.zip」をデスクトップへ解凍する。

PAIL	開く(の) エクスプロ <i>ー</i> ラ(※)			
	解凍(<u>E)</u> 圧縮(<u>C</u>)	ļ	デスクトップに解凍(<u>D</u>) ここに解凍(<u>H</u>)	
	<u>ॡ"T</u> ortoiseSVN	•	出力先を指定して解凍(S) テンポラリモードで解凍(T)	_
	💟 脅威のスキャン	1		

さらにデスクトップに作成された「PA10」というフォルダ内にある「device.zip」を「C:\」へ解凍する。

名前 🔺	サイズ 種類
開く(の) エクスプローラ(※)	105 KB ZipFile
解演(<u>E</u>) <i>国物</i> (C)	▶ デスクトップに解凍(<u>D</u>)
💿 SVN Uポジトロブラウザ(R)	出力光を指定して解凍し
	テンボラリモードで「解)凍(1)
Lhaplus	×
'device zip' の解凍先フォルダを打	皆定してください。
C:¥	
	OK キャンセル

3.2.3.2. 2. OpenRTM-aist-1.0.0-RELEASE (C++) Windows のインストール

C++言語で実装された RTC を実行するための RT ミドルウェアをインストールし、バグ対応を行う。

1. 下記の URL を参考にして OpenRTM-aist-1.0.0-RELEASE (C++) Windows をインストールする。 URL:http://www.openrtm.org/OpenRTMaist/html/E3839EE3838BE383A5E382A2E383AB2FC2B2BE78988E382A4E383B3E382B9 E38388E383BCE383AB28Windows202C1.0.029.html#n7036074

Ubuntu 10.04 版のものと同様のバグ対応を行う。

- 2. 環境構築 1.で導入した「PA10」フォルダ内にある 1.0.0_Windows バグ対応.zip ファイルを解凍する。
- 3. フォルダ内ファイルを、C:\Program Files\OpenRTM-aist\1.0\bin にコピー(上書き)する。
- 3.2.3.3.3. 三菱重工業製 PA ライブラリ のインストール

PA10 の制御には三菱重工業製 PA ライブラリ(商用)を使用する。ライブラリのインストールや運動制御ボードの設置、 機器接続については付属のソフトウェアインストールマニュアルに従う。

尚、ソフトウェアインストール先は以下の通りとする。

C:\WinPApci

3.2.3.4.4. コンテック社製 API 関数ライブラリ集 API-PAC(W32) のインストール

RH707の制御にはコンテック社製 API 関数ライブラリ集 API-PAC(W32)を使用する。ライブラリ は API-DIO(98/PC)を選択し、 インストールするものとし、運動制御ボードの設置方法及びライブラリのインストール方法について

インストールするものとし、運動制御ボードの設置方法及びライブラリのインストール方法について は付属の説明書に従う。

機器接続についてはシステム概要ハードウェア構成節 RH700C3-PIO-32/32L(PCI)H 接続図を 参照のこと。

尚、ソフトウェアインストール先は以下の通りとする。

C:\CONTEC

3.2.3.5. 5. RTC のコンパイル

ソースをビルドする。

HandCtrl

C:\device\HandCtrl フォルダ内にある HandCtrlComp_vc9.vcproj を開く。

「Release」モードに切り替え、「ビルド」タブから「ソリューションのビルド」を選択し実行する。

🖄 HandOtrlComp_vc9 - Visual C++ 2008 Express Edition				
ファイル(E) 編集(E) 表示(V) プロジェクト(P)	ビル	<u>ヾ(B)</u> デバッグ(<u>D</u>) ツール(]) ウィンドウ(<u>W</u>) ヘルプ(日)
j 🔊 - (≌ - 🕨 Release 🔹 Win32		ンリューションのビルド(<u>B</u>)	F7	• -
🐼 Υμα-θεύ Ιδλύσ 👻 🗛 🗙		- ンリューションのリビルド(<u>B</u>) - C	Strl+Alt+F7	
ý 🖶 🎦		ソリューションのクリーン(<u>C</u>)		
ン 「フリューション 'HandCtrlComp」		HandCtrlComp のビルド(リ)		
		HandCtrlComp のリビルド(<u>E</u>)		
		HandCtrlComp のクリーン(<u>N</u>		
		プロジェクトのみ(」)	•	
- 「 「 「 「		バッチ ビルド(<u>T</u>)		
1 22		構成マネージャ(0)…		
÷.				
4				

C:\device\HandCtrl フォルダ内に components というフォルダが作成されていることを確認し、その中に C:\device\HandCtrl\rtc.conf をコピーする。

🗁 components				
ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(T) ヘルプ(H)				
🕞 戻る 🔹 💮 🖌 🏂 🎾 検索 🎼 フォルダ 🔠 🖬				
アドレス(D) 🛅 C:¥PA10¥device¥HandCtrl¥components				
名前 🔺	サイズ 種類			
ファイルとフォルダのタスク	71 KB アプリケーション			
このファイルの名前を変更する	1 KB CONF ファイル			

• pa10vel

C:\device\pa10vel フォルダ内にある pa10velComp_vc9.vcproj を開く。

🗁 pa10vel_win				
ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(T) ヘルプ(H)				
🕞 戻る 🔹 🌍 🖌 🏂 խ 検索 🎼 フォルダ 🔠 🕶				
アドレス(<u>D</u>) 🚞 C:¥ device¥pa10vel				
	名前 🔺	サイズ 種類		
ファイルとフォルダのタスク <	🖬 project	1 KB PROJECT 771	ĺμ –	
≓過 このつっくルの冬前を変更する	📄 com_pa10.idl	1 KB Interface Defin	ition	
	🚰 com_pa10SVC_impl.cpp	6 KB C++ Source		
☆ このファイルを移動する	🛅 com_pa10SVC_imp1h	2 KB C/C++ Header		
📄 このファイルをコピーする	🐻 copypropsbat	1 KB MS-DOS バッチ	ファ	
🔕 このファイルを Web に公開する	🔟 Makefilepa10vel	3 KB PA10VEL ファイ.	π	
🦾 このファイルを電子メールで送信	📦 pa10vel.conf	OKB CONFファイル		
- 48 HILLER	🚰 pa10vel.cpp	8 KB C++ Source		
🗙 このファイルを削除する	🖻 pa10velh	7 KB C/C++ Header		
	🕋 pa10vel×m.×ml	6 KB XML אלאבאטא 6 KB		
	pa10vel_vc8.vcproj	6 KB VC++ Project		
その他 ペ	🚰 pa10vel_vc9.vcproj	6 KB VC++ Project		
👄 device	🚰 pa10velComp.cpp	3 KB C++ Source		
	🚰 pa10velComp_vc8.vcproj	6 KB VC++ Project		
1 VI 172	pa10velComp_vc9.vcproj	6 KB VC++ Project		
🛅 共有ドキュメント	le]rtc.conf	1KB CONF ファイル		
🧕 🧕 マイ コンピュータ	🔮 RTC xml	6 KB - XML ドキュメント		
🜍 マイ ネットワーク	🔤 rtm_config.vsprops	3 KB Project Propert	y File	
3	🔤 user_config.vsprops	1 KB Project Propert	y File	

「Release」モードに切り替え、「ビルド」タブから「ソリューションのビルド」を選択し実行する。

C:\device\pa10vel フォルダ内に components というフォルダが作成されていることを確認し、その中に C:\device\pa10vel\rtc.conf をコピーする。

4. 使用方法

本章では、PA10 システムを来訪者受付システムの一部として使用するための方法と、 来訪者受付システムとは独立に PA10 システムの機能を単体で操作(モジュール単体操作)する ための方法の 2 つについて記載する。後者は PA10 システムの機能毎の動作確認を行いたい場 合等に使用する。

4.1. PA10 システム

PA10 システムの使用方法を以下に示す。

4.1.1. PA10 システム起動

- 1. PA10 の周りにあるもの(テーブル等)をどける。
- 2. サーボコントローラの電源を入れ、非常停止ボタンを OFF にする。
- 3. PA10 システム用制御 PC、ロボットアーム・ハンド用制御 PC、ビジョンシステム(ホルダ認識)用制 御 PC の電源を入れる。
 - 4. eclipse を起動する。

cd eclipse ~/eclipse\$sh eclipse.sh ←Eclipse 動作不具合対応として作成した sh

URL:http://www.openrtm.org/openrtm/ja/node/941#toc0

5. PA10 の起動

5.1. PA10 システム用制御 PC 上でネームサーバ(rtm-naming 9876)を立ち上げる。

rtm-naming 9876

5.2. PA10 システム用制御 PC 上でネームサーバ(rtm-naming 2809)を立ち上げる。

rtm-naming 2809

5.3. PA10 システム用制御 PC 上で PA10 システム制御 RTC を起動する。

cd PCforSystemControl/bin/comp ~/PCforSystemControl/bin/comp\$./PA10SystemControllerComp f ../../etc/PA10SystemController.conf

5.4. PA10 システム用制御 PC 上で分解運動速度制御 RTC を起動する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$sh PA10SysRun.sh

5.5. ロボットアーム・ハンド用制御 PC でネームサーバ(rtm-naming 9876)を立ち上げる。

rtm-naming 9876

5.6. ロボットアーム・ハンド用制御 PC で PA10 実機制御 RTC を起動する。 RTC を実行した際に PA10 が待機姿勢に移行するので注意する。

C:\Documents and Settings\rtc-center\>cd C:\device\pa10vel\components C:\device\pa10vel\components>pa10velComp.exe

6. RH707 ハンドを起動する。

- 6.1. ロボットハンドコントローラの電源を入れる。
- 6.2. ロボットアーム・ハンド用制御 PC で RH707 制御 RTC を立ち上げる。

C:\Documents and Settings\rtc-center\>cd C:\device\HandCtrl\components C:\device\HandCtrl\components>HandCtrlComp.exe

7.カメラを起動する。

7.1. ビジョンシステム(ホルダ認識)用制御 PC でネームサーバ(rtm-naming 9876)を立ち上 げる。

rtm-naming 9876

7.2. ビジョンシステム(ホルダ認識)用制御 PC で作業対象認識 RTC 群(ホルダ認識用)を立ち上げる。

cd PCforOpenVGR ~/PCforOpenVGR\$sh OpenVGR_run.sh

7.3. PA10 システム用制御 PC 上でネームサーバ(rtm-naming 5005)を立ち上げる。

rtm-naming 5005

- 7.4. PA10 システム用制御 PC 上で作業対象認識 RTC 群(飲み物認識用)を立ち上げ、 ポート接続を行う。本操作により 7.2.で起動したビジョンシステム(ホルダ認識)用制御 PC 上の作業対象認識 RTC 群についても同時にポート間の接続が行われるため、必ず 7.2. の操作を済ませておく。
 - cd PCforSystemControl/bin/comp
 - $\sim\!\!/PC for System Control/bin/script\$sh OpenVGR_run.sh$
 - ~/PCforSystemControl/bin/script\$python VGRdrink_run.py
 - $\sim\!\!/PC for System Control/bin/script python VGR holder_run.py$

4.1.2. キャリブレーション

PA10 システムにおいて、対象物の座標(PA10 ベース座標系)を取得するためにカメラ座標キャリブレーションを行う。キャリブレーションは 14 点のサンプルデータを基にして行われる。各サンプル点座標は、まず、 PA10 手先につけたクロスマークを認識することでカメラ座標系における対象物の座標を取得し、それに座 標変換を施すことでロボット座標系における座標を算出する。キャリブレーション方法や座標変換方法につ いては参考資料 6、7、8 を参考にして行うものとする。

以下では、14 点のサンプルデータ採取のための PA10 動作制御スクリプトの使用方法を記述する。

1. PA10 システム用制御 PC 上でキャリブレーション用 PA10 動作スクリプトを実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python VGRcalib.py .

>>>need ready(1)? :y or n

"y"と入力する。

>>>need ready(1)? :y or n y
:
>>>Select mode [table: 1 RH: 2 QUIT: 3] :

飲み物認識用カメラの場合は 1、ホルダ認識用カメラの場合は 2 と入力する。 ex. 飲み物認識用カメラの場合

>>>Select mode [table: 1 RH: 2 QUIT: 3] :1

PA10の手先がキャリブレーション開始位置へ移動する。

コンソールには、

>>>Select mode [table: 1 RH: 2 QUIT: 3] :1

move to 1.. OK?

と出力され、キー入力待ちになる。以降、" Enter キー "を入力することで手先を順次キャリブレ ーション点へ移動させることができる。

- 2. 14 点のサンプルデータ取得後、スクリプト実行フォルダに作成されるサンプル点座標(ロボット座 標系)3d.txtをキャリブレーションを行う PC(14 点のサンプルデータ保存場所)へ格納する。
 - 飲み物認識カメラに対するカメラ座標キャリブレーションは PA10 システム用制御 PC 上で行う。
 - ホルダ認識カメラに対するカメラ座標キャリブレーションはビジョンシステム(ホルダ認識)用制御 PC上で行う。
- 3. キャリブレーション用 PA10 動作スクリプトを終了する。

>>>Select mode [table: 1 RH: 2 QUIT: 3] :3

4.1.3. PA10 サービス(給仕)開始

- 1. テーブルを設置する。 参考:飲み物搭載配置図
- 2. テーブルの上に必要なだけお茶を設置する。

図:お茶設置図.png

飲み物は、カメラから見て重ならないように設置する。 図:カメラが取得する画像

3. PA10 システム起動時に立ち上げた RTSystemEditor 上で制御端末 RTC と PA10 システム制御 RTC のポートを接続し、PA10 システム制御 RTC を活性化させる(ポート接続図参照)。

図:ポート接続図

以上を終えると、制御端末からの要求に従い PA10 システムが給仕を開始する。給仕要求が発生 するまでは PA10 は待機状態となる。 4. 給仕中の操作

制御端末から給仕の指示があると、PA10 システムによる RH への飲み物給仕が始まる。 PA10 の手先が目標の真上に来ている(まっすぐ下降してもツメと飲み物、もしくは把持した飲み物 とドリンクホルダが干渉しない) かどうかを目視で確認しながら行う。

把持前確認

ツメの軌跡が赤い破線の通りになりそうならば OK とする。

搭載前確認

缶の底がホルダの穴(赤い実線)の真上に来ていれば OK とする。

4.1.4. PA10 システム終了

- 1. PA10 システム起動時に立ち上げた RTSystemEditor 上で PA10SystemController を非活性化さ せる。この作業により RMRC および OpenVGR 関連 RTC が終了する。
- 2. ロボットアーム・ハンド用制御 PC で PA10 実機制御 RTC を終了する。
- 3.
- PA10 実機制御 RTC が立ち上がっているコンソールをアクティブにして、Ctrl+C を押す。 このとき PA10 が直立姿勢へ戻るので注意すること。
- 4. ロボットアーム・ハンド用制御 PC で RH707 制御 RTC を終了する。 RH707 制御 RTC が立ち上 がっているコンソールをアクティブにして、 Ctrl+C を押す。
- 5. PA10 システム用制御 PC 上で PA10SystemController を終了する。 PA10 システム用制御 PC 上で PA10SystemController が立ち上がっているコンソールをアクテ ィブにして、Ctrl+C を押す。

4.1.5. PA10 システム復旧

PA10の異常動作時、または PA10を緊急停止させたい時は直ちに非常停止ボタンを押し(ON にする)、 以下の通り復旧する。

1. Rtc_Handle でハンドリングしていた RTC を全て終了する。(PA10 システム終了を参照) ハンドリングしたままになっている RTC が残っていると、以降、二重にハンドリングすることになっ てしまうため良くない。

ハンドリングしたままの RTC は、下図に示される通り RTSystemEditor 上でポート間を線が結ん でいなくてもポートが接続時の色で示されている。

図:ハンドリングしたままの RTC

- 2. 非常停止によって実行不能になってしまった python スクリプトを終了させる。 スクリプト実行コンソールをアクティブにし、Ctrl+d を押す。
- 3. 非常停止ボタンを OFF にする。
- 4.1.で終了した RTC を再度起動する。(PA10 システム起動を参照)

4.2. モジュール単体操作

以下のように各制御スクリプトを実行することで、モジュール毎の動作確認を行うことができる。

4.2.1. PA10 単体操作

- 実機操作
- 1. PA10 実機制御スクリプトをインタラクティブモードで実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python

pa10act_ctrl をインポートする。

>>>from pa10act_ctrl import *

RTC 間でのポート接続や Activate が行われ、実機が待機姿勢へ移行する。

以降、インタラクティブモードで PA10 実機制御が可能になる。制御コマンドについては以下に記載してある。

PA10 制御スクリプト[br]

例)

```
>>>move_joint(j_ready)
>>>go_to(point1)
```

2. PA10 実機制御スクリプトを終了する。

end()関数を実行し、PA10実機制御スクリプトを終了させる。

>>>end(env)

Ctrl+d を押し、python インタラクティブモードを終了する。

● シミュレータ環境での操作

1. PA10 システム用制御 PC 上で必要な RTC を起動する。

cd PCforSystemControl/bin/script

~/PCforSystemControl/bin/script\$sh killPA10rtc.sh

 $\sim\!\!/PC for System Control/bin/script \$sh sim PA10Sys Run.sh$

2. シミュレーション用 PA10 制御スクリプトをインタラクティブモードで実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python pa10sim_ctrl をインポートする。

>>>from pa10sim_ctrl import *

RTC 間での RTC ポート接続や Activate が行われ、シミュレータ上の PA10 モデルが待機姿勢へ移行する。

図:シミュレータ上の PA10 モデル

以降、インタラクティブモードで PA10 のシミュレーションが可能になる。制御コマンドについて は以下に記載してある。 PA10 制御スクリプト[br]

例)

>>>move_joint(j_ready)
>>>go_to(point1)

3. シミュレーション用 PA10 制御スクリプトを終了する。

end()関数を実行し、シミュレーション用 PA10 制御スクリプトを終了させる。

>>>end(env)

Ctrl+dを押し、python インタラクティブモードを終了する。

4. シミュレーション用の RTC を終了させる場合は以下を実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$sh killPA10rtc.sh

※分解運動速度制御 RTC も終了するので、再度 PA10 を動作させる場合は PA10SysRun.sh を実行し分解運動速度制御 RTC を起動しなおすことに注意する。

4.2.2. 作業対象認識 RTC 群単体操作

- 飲み物認識用カメラの場合
- 1. カメラ視野内に認識可能なもの (ex. 190mm 缶) を置く。
- 2. 飲み物認識スクリプトをインタラクティブモードで実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python

VGRdrink ctrl をインポートする。

>>>from VGRdrink_ctrl import *

RTC 間のポート接続や Activate が行われる。

以降、インタラクティブモードで物体認識が可能になる。制御コマンドについては以下に記載してある。

参照:PA10 詳細設計書 4.1.3.5. 飲み物認識スクリプト

3. 飲み物認識スクリプトを終了する。

end()関数を実行し、飲み物認識スクリプトを終了させる。

>>>end(env)

Ctrl+dを押し、python インタラクティブモードを終了する。

- ホルダ認識用カメラの場合
- 1. カメラ視野内に認識可能なもの(ex. ドリンクホルダ)を置く。
- 2. ホルダ認識スクリプトをインタラクティブモードで実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python

VGRholder_ctrl をインポートする。

>>>from VGRholder ctrl import *

RTC 間のポート接続や Activate が行われる。

以降、インタラクティブモードで物体認識が可能になる。制御コマンドについては以下に記載してある。

参照: PA10 詳細設計書 4.1.3.6. ホルダ認識スクリプト

3. ホルダ認識スクリプトを終了する。

end()関数を実行し、ホルダ認識スクリプトを終了させる。

>>>end(env)

Ctrl+dを押し、python インタラクティブモードを終了する。

4.2.3. RH707 単体操作

ハンド制御スクリプトをインタラクティブモードで実行する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$python

hand_ctrl をインポートする。

>>>from hand_ctrl import *

RTC 間のポート接続や Activate が行われる。

以降、インタラクティブモードで RH707 の制御が可能になる。制御コマンドについては以下に 記載してある。

参照:PA10 詳細設計書 4.1.3.4. ハンド制御スクリプト

ハンド制御スクリプトを終了する。

deactivate()関数を実行し、ハンド制御スクリプトを deactivate させる。

>>>deactivate()

Ctrl+dを押し、python インタラクティブモードを終了する。

4.3. PA10 サービス(給仕)シミュレーション

PA10 サービス(給仕)の実機動作をシミュレーションする場合は以下の様にする。

1. PA10 システム起動の手順 3 から 5.3 までを行う。

2. PA10 システム起動の手順7 を行う。

3. シミュレーションに必要な RTC を起動する。

cd PCforSystemControl/bin/script ~/PCforSystemControl/bin/script\$sh killPA10rtc.sh ~/PCforSystemControl/bin/script\$sh simPA10SysRun.sh

4. PA10 サービス(給仕)開始の手順 1、2 を行う。

5. PA10 システム起動時に立ち上げた RTSystemEditor 上で、PA10SystemController のコンフィギュレーションセットを変更する。

コンフィギュレーションセット 名	認識カメラの使用	アーム・ハンドの使用
ServiceSimulation_dmyd ata	なし(ダミーの認識結果データ を使用)	VPython を用いたシミュレー タモデル
ServiceSimulation	あり	VPython を用いたシミュレー タモデル

6. PA10 システム起動時に立ち上げた RTSystemEditor 上で制御端末 RTC と PA10 システム制御 RTC のポートを接続し、PA10 システム制御 RTC を活性化させる(ポート接続図参照)。

図:ポート接続図

以上を終えると、制御端末からの要求に従い PA10 システムの給仕をシミュレーションできる。給 仕要求が発生するまでは PA10 は待機状態となる。

7. PA10 システム終了の手順 1、4 を行う。

5. トラブルシューティング

5.1.1.作業対象認識率の低下

作業対象認識に頻繁に失敗するようになってきたり、飲み物の把持点や搭載目標座標がずれるようになってきた場合は、

再度カメラ座標キャリブレーションを行う。

6. その他

6.1. その他の要件

特になし。

6.2. 特記事項

本書をご利用される場合には、以下の記載事項・条件にご同意いただいたものとします。

- ●本書は独立行政法人新エネルギー・産業技術総合開発機構の「次世代ロボット知能化技術開発プロジェクト」内実施者向けに評価を目的として提供するものであり、商用利用など他の目的で使用することを禁じます。
- ●本書に情報を掲載する際には万全を期していますが、それらの情報の正確性またはお客様にとっての有用性等については一切保証いたしません。
- 利用者が本書を利用することにより生じたいかなる損害についても一切責任を負いません。
- ●本書の変更、削除等は、原則として利用者への予告なしに行います。また、止むを得ない事由により公開を中断あるいは中止させていただくことがあります。
- ●本書の情報の変更、削除、公開の中断、中止により、利用者に生じたいかなる損害についても一切 責任を負いません。
- PA ライブラリは、三菱重工業株式会社の製品であり、権利は三菱重工業株式会社に帰属します。
- API 関数ライブラリ集 API-PAC(W32) は、株式会社コンテックの製品であり、権利は株式会社コン テックに帰属します。
- 作業対象認識モジュール群は、産業技術総合研究所が著作権を保持します。

【連絡先】

RTC 再利用技術研究センター 〒101-0021 東京都千代田区外神田 1-18-13 秋葉原ダイビル 1303 号室 Tel/Fax:03-3256-6353 E-Mail:contact@rtc-center.jp